
Document Number: MD00090
Revision 2.62

January 02, 2009

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture For Programmers
Volume III: The MIPS32® Privileged

Resource Architecture

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Template: nB1.03, Built with tags: 2B ARCH MIPS32

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 3

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Contents

Chapter 1: About This Book .. 9
1.1: Typographical Conventions ... 9

1.1.1: Italic Text.. 9
1.1.2: Bold Text .. 9
1.1.3: Courier Text ... 10

1.2: UNPREDICTABLE and UNDEFINED ... 10
1.2.1: UNPREDICTABLE... 10
1.2.2: UNDEFINED .. 10
1.2.3: UNSTABLE .. 11

1.3: Special Symbols in Pseudocode Notation... 11
1.4: For More Information ... 13

Chapter 2: The MIPS32 Privileged Resource Architecture ... 15
2.1: Introduction.. 15
2.2: The MIPS Coprocessor Model .. 15

2.2.1: CP0 - The System Coprocessor .. 15
2.2.2: CP0 Registers .. 15

Chapter 3: MIPS32 Operating Modes.. 17
3.1: Debug Mode ... 17
3.2: Kernel Mode .. 17
3.3: Supervisor Mode ... 17
3.4: User Mode ... 18
3.5: Other Modes.. 18

3.5.1: 64-bit Floating Point Operations Enable .. 18
3.5.2: 64-bit FPR Enable.. 18
3.5.3: Coprocessor 0 Enable.. 18

Chapter 4: Virtual Memory ... 19
4.1: Support in Release 1 and Release 2 of the Architecture... 19

4.1.1: Virtual Memory ... 19
4.2: Terminology... 19

4.2.1: Address Space... 19
4.2.2: Segment and Segment Size .. 19
4.2.3: Physical Address Size (PABITS) ... 19

4.3: Virtual Address Spaces ... 20
4.4: Compliance.. 22
4.5: Access Control as a Function of Address and Operating Mode.. 23
4.6: Address Translation and Cacheability & Coherency Attributes for the kseg0 and kseg1 Segments 23
4.7: Address Translation for the kuseg Segment when StatusERL = 1 ... 24
4.8: Special Behavior for the kseg3 Segment when DebugDM = 1... 24
4.9: TLB-Based Virtual Address Translation .. 24

4.9.1: Address Space Identifiers (ASID) .. 25
4.9.2: TLB Organization ... 25
4.9.3: TLB Initialization... 25
4.9.4: Address Translation ... 27

4 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Chapter 5: Interrupts and Exceptions... 31
5.1: Interrupts ... 31

5.1.1: Interrupt Modes .. 32
5.1.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 41

5.2: Exceptions ... 43
5.2.1: Exception Priority ... 43
5.2.2: Exception Vector Locations.. 45
5.2.3: General Exception Processing... 47
5.2.4: EJTAG Debug Exception ... 49
5.2.5: Reset Exception ... 50
5.2.6: Soft Reset Exception.. 51
5.2.7: Non Maskable Interrupt (NMI) Exception .. 52
5.2.8: Machine Check Exception.. 53
5.2.9: Address Error Exception .. 53
5.2.10: TLB Refill Exception... 54
5.2.11: TLB Invalid Exception .. 54
5.2.12: TLB Modified Exception ... 55
5.2.13: Cache Error Exception ... 55
5.2.14: Bus Error Exception ... 56
5.2.15: Integer Overflow Exception .. 56
5.2.16: Trap Exception ... 57
5.2.17: System Call Exception ... 57
5.2.18: Breakpoint Exception ... 57
5.2.19: Reserved Instruction Exception ... 58
5.2.20: Coprocessor Unusable Exception.. 58
5.2.21: Floating Point Exception .. 59
5.2.22: Coprocessor 2 Exception ... 59
5.2.23: Watch Exception .. 60
5.2.24: Interrupt Exception ... 60

Chapter 6: GPR Shadow Registers ... 63
6.1: Introduction to Shadow Sets.. 63
6.2: Support Instructions... 64

Chapter 7: CP0 Hazards ... 65
7.1: Introduction.. 65
7.2: Types of Hazards .. 65

7.2.1: Execution Hazards ... 65
7.2.2: Instruction Hazards .. 67

7.3: Hazard Clearing Instructions and Events .. 68
7.3.1: Instruction Encoding... 68

Chapter 8: Coprocessor 0 Registers .. 69
8.1: Coprocessor 0 Register Summary .. 69
8.2: Notation ... 74
8.3: Writing CPU Registers... 74
8.4: Index Register (CP0 Register 0, Select 0)... 76
8.5: Random Register (CP0 Register 1, Select 0).. 77
8.6: EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ... 78
8.7: Context Register (CP0 Register 4, Select 0) ... 82
8.8: UserLocal Register (CP0 Register 4, Select 2) ... 83
8.9: PageMask Register (CP0 Register 5, Select 0) .. 84

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 5

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.10: PageGrain Register (CP0 Register 5, Select 1) .. 86
8.11: Wired Register (CP0 Register 6, Select 0) .. 88
8.12: HWREna Register (CP0 Register 7, Select 0) .. 90
8.13: BadVAddr Register (CP0 Register 8, Select 0) ... 92
8.14: Count Register (CP0 Register 9, Select 0).. 93
8.15: Reserved for Implementations (CP0 Register 9, Selects 6 and 7) .. 93
8.16: EntryHi Register (CP0 Register 10, Select 0).. 94
8.17: Compare Register (CP0 Register 11, Select 0)... 96
8.18: Reserved for Implementations (CP0 Register 11, Selects 6 and 7) .. 96
8.19: Status Register (CP Register 12, Select 0) ... 97
8.20: IntCtl Register (CP0 Register 12, Select 1) ... 104
8.21: SRSCtl Register (CP0 Register 12, Select 2).. 106
8.22: SRSMap Register (CP0 Register 12, Select 3) ... 109
8.23: Cause Register (CP0 Register 13, Select 0) ... 110
8.24: Exception Program Counter (CP0 Register 14, Select 0) ... 115

8.24.1: Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE........... 115
8.25: Processor Identification (CP0 Register 15, Select 0) .. 117
8.26: EBase Register (CP0 Register 15, Select 1)... 119
8.27: Configuration Register (CP0 Register 16, Select 0) .. 121
8.28: Configuration Register 1 (CP0 Register 16, Select 1) ... 123
8.29: Configuration Register 2 (CP0 Register 16, Select 2) ... 127
8.30: Configuration Register 3 (CP0 Register 16, Select 3) ... 130
8.31: Reserved for Implementations (CP0 Register 16, Selects 6 and 7) .. 133
8.32: Load Linked Address (CP0 Register 17, Select 0) .. 134
8.33: WatchLo Register (CP0 Register 18) .. 135
8.34: WatchHi Register (CP0 Register 19)... 137
8.35: Reserved for Implementations (CP0 Register 22, all Select values)... 139
8.36: Debug Register (CP0 Register 23).. 140
8.37: DEPC Register (CP0 Register 24) .. 141

8.37.1: Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE........ 141
8.38: Performance Counter Register (CP0 Register 25) .. 142
8.39: ErrCtl Register (CP0 Register 26, Select 0) .. 146
8.40: CacheErr Register (CP0 Register 27, Select 0) .. 147
8.41: TagLo Register (CP0 Register 28, Select 0, 2) ... 148
8.42: DataLo Register (CP0 Register 28, Select 1, 3).. 149
8.43: TagHi Register (CP0 Register 29, Select 0, 2).. 150
8.44: DataHi Register (CP0 Register 29, Select 1, 3) .. 151
8.45: ErrorEPC (CP0 Register 30, Select 0) .. 152

8.45.1: Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE... 152
8.46: DESAVE Register (CP0 Register 31).. 154

Appendix A: Alternative MMU Organizations .. 155
A.1: Fixed Mapping MMU ... 155

A.1.1: Fixed Address Translation ... 155
A.1.2: Cacheability Attributes ... 158
A.1.3: Changes to the CP0 Register Interface ... 159

A.2: Block Address Translation .. 159
A.2.1: BAT Organization .. 159
A.2.2: Address Translation... 160
A.2.3: Changes to the CP0 Register Interface .. 161

Appendix B: Revision History ... 163

6 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figures

Figure 4-1: Virtual Address Space .. 20
Figure 4-2: References as a Function of Operating Mode.. 22
Figure 4-3: Contents of a TLB Entry .. 25
Figure 5-1: Interrupt Generation for Vectored Interrupt Mode... 37
Figure 5-2: Interrupt Generation for External Interrupt Controller Interrupt Mode... 40
Figure 8-1: Index Register Format .. 76
Figure 8-2: Random Register Format ... 77
Figure 8-3: EntryLo0, EntryLo1 Register Format in Release 1 of the Architecture ... 78
Figure 8-4: EntryLo0, EntryLo1 Register Format in Release 2 of the Architecture ... 79
Figure 8-5: Context Register Format... 82
Figure 8-6: UserLocal Register Format... 83
Figure 8-7: PageMask Register Format .. 84
Figure 8-8: PageGrain Register Format.. 86
Figure 8-9: Wired And Random Entries In The TLB ... 88
Figure 8-10: Wired Register Format.. 88
Figure 8-11: HWREna Register Format .. 90
Figure 8-12: BadVAddr Register Format... 92
Figure 8-13: Count Register Format ... 93
Figure 8-14: EntryHi Register Format ... 94
Figure 8-15: Compare Register Format .. 96
Figure 8-16: Status Register Format... 97
Figure 8-17: IntCtl Register Format... 104
Figure 8-18: SRSCtl Register Format ... 106
Figure 8-19: SRSMap Register Format... 109
Figure 8-20: Cause Register Format... 110
Figure 8-21: EPC Register Format.. 115
Figure 8-22: PRId Register Format ... 117
Figure 8-23: EBase Register Format .. 119
Figure 8-24: Config Register Format... 121
Figure 8-25: Config1 Register Format... 123
Figure 8-26: Config2 Register Format... 127
Figure 8-27: Config3 Register Format... 130
Figure 8-28: LLAddr Register Format ... 134
Figure 8-29: WatchLo Register Format... 135
Figure 8-30: WatchHi Register Format ... 137
Figure 8-31: Performance Counter Control Register Format .. 142
Figure 8-32: Performance Counter Counter Register Format... 145
Figure 8-33: ErrorEPC Register Format.. 152
Figure A-1: Memory Mapping when ERL = 0.. 157
Figure A-2: Memory Mapping when ERL = 1.. 158
Figure A-3: Config Register Additions... 159
Figure A-4: Contents of a BAT Entry .. 160

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 7

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 11
Table 4.1: Virtual Memory Address Spaces.. 21
Table 4.2: Address Space Access as a Function of Operating Mode... 23
Table 4.3: Address Translation and Cacheability and Coherency Attributes for the kseg0 and kseg1 Segments . 24
Table 4.4: Physical Address Generation... 30
Table 5.1: Interrupt Modes.. 32
Table 5.2: Request for Interrupt Service in Interrupt Compatibility Mode ... 33
Table 5.3: Relative Interrupt Priority for Vectored Interrupt Mode... 36
Table 5.4: Exception Vector Offsets for Vectored Interrupts... 41
Table 5.5: Interrupt State Changes Made Visible by EHB .. 42
Table 5.6: Priority of Exceptions ... 43
Table 5.7: Exception Type Characteristics.. 44
Table 5.8: Exception Vector Base Addresses... 46
Table 5.9: Exception Vector Offsets ... 46
Table 5.10: Exception Vectors .. 47
Table 5.11: Value Stored in EPC, ErrorEPC, or DEPC on an Exception.. 48
Table 6.1: Instructions Supporting Shadow Sets .. 64
Table 7.1: Execution Hazards... 65
Table 7.2: Instruction Hazards .. 67
Table 7.3: Hazard Clearing Instructions.. 68
Table 8.1: Coprocessor 0 Registers in Numerical Order .. 69
Table 8.2: Read/Write Bit Field Notation... 74
Table 8.3: Index Register Field Descriptions .. 76
Table 8.4: Random Register Field Descriptions.. 77
Table 8.5: EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture 78
Table 8.6: EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture 79
Table 8.7: EntryLo Field Widths as a Function of PABITS.. 80
Table 8.8: Cacheability and Coherency Attributes.. 81
Table 8.9: Context Register Field Descriptions... 82
Table 8.10: UserLocal Register Field Descriptions ... 83
Table 8.11: PageMask Register Field Descriptions .. 84
Table 8.12: Values for the Mask and MaskX1 Fields of the PageMask Register.. 85
Table 8.13: PageGrain Register Field Descriptions.. 86
Table 8.14: Wired Register Field Descriptions.. 89
Table 8.15: HWREna Register Field Descriptions .. 90
Table 8.16: RDHWR Register Numbers ... 91
Table 8.17: BadVAddr Register Field Descriptions... 92
Table 8.18: Count Register Field Descriptions.. 93
Table 8.19: EntryHi Register Field Descriptions ... 94
Table 8.20: Compare Register Field Descriptions .. 96
Table 8.21: Status Register Field Descriptions... 97
Table 8.22: IntCtl Register Field Descriptions... 104
Table 8.23: SRSCtl Register Field Descriptions ... 106
Table 8.24: Sources for new SRSCtlCSS on an Exception or Interrupt ... 107
Table 8.25: SRSMap Register Field Descriptions... 109
Table 8.26: Cause Register Field Descriptions... 110
Table 8.27: Cause Register ExcCode Field .. 113

8 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 8.28: EPC Register Field Descriptions.. 115
Table 8.29: PRId Register Field Descriptions ... 117
Table 8.30: EBase Register Field Descriptions... 119
Table 8.31: Conditions Under Which EBase15..12 Must Be Zero .. 120
Table 8.32: Config Register Field Descriptions... 121
Table 8.33: Config1 Register Field Descriptions... 123
Table 8.34: Config2 Register Field Descriptions... 127
Table 8.35: Config3 Register Field Descriptions... 130
Table 8.36: LLAddr Register Field Descriptions.. 134
Table 8.37: WatchLo Register Field Descriptions... 135
Table 8.38: WatchHi Register Field Descriptions.. 137
Table 8.39: Example Performance Counter Usage of the PerfCnt CP0 Register... 142
Table 8.40: Performance Counter Control Register Field Descriptions .. 143
Table 8.41: Performance Counter Counter Register Field Descriptions ... 145
Table 8.42: ErrorEPC Register Field Descriptions.. 152
Table A.1: Physical Address Generation from Virtual Addresses... 155
Table A.2: Config Register Field Descriptions .. 159
Table A.3: BAT Entry Assignments... 160

Chapter 1

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 9

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

About This Book

The MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture comes as
a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS32®
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume III describes the MIPS32® Privileged Resource Architecture which defines and governs the behavior of
the privileged resources included in a MIPS32® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS32® document set

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS32® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

 About This Book

10 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.3 Special Symbols in Pseudocode Notation

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 11

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

 About This Book

12 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian-
ness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this endi-
anness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for dif-
ferent instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.4 For More Information

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 13

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 32-bit address all of which are significant during a memory refer-
ence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension, the ISA Mode is a single-bit reg-
ister that determines in which mode the processor is executing, as follows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32
32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32
64-bit FPRs in which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a compati-
bility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a
case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the processor
operates as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e instructions

http://www.mips.com/
mailto:architecture@mips.com

 About This Book

14 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Chapter 2

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 15

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

The MIPS32 Privileged Resource Architecture

2.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) is a set of environments and capabilities on which the Instruc-
tion Set Architecture operates. The effects of some components of the PRA are user-visible, for instance, the virtual
memory layout. Many other components are visible only to the operating system kernel and to systems programmers.
The PRA provides the mechanisms necessary to manage the resources of the CPU: virtual memory, caches, excep-
tions and user contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA provides for up to 4 coprocessors. A coprocessor extends the functionality of the MIPS ISA, while
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system copro-
cessor and the floating point unit are standard parts of the ISA, and are specified as such in the architecture docu-
ments. Coprocessors are generally optional, with one exception: CP0, the system coprocessor, is required. CP0 is the
ISA interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CP0 - The System Coprocessor

CP0 provides an abstraction of the functions necessary to support an operating system: exception handling, memory
management, scheduling, and control of critical resources. The interface to CP0 is through various instructions
encoded with the COP0 opcode, including the ability to move data to and from the CP0 registers, and specific func-
tions that modify CP0 state. The CP0 registers and the interaction with them make up much of the Privileged
Resource Architecture.

2.2.2 CP0 Registers

The CP0 registers provide the interface between the ISA and the PRA. The CP0 registers are described in Chapter 8

 The MIPS32 Privileged Resource Architecture

16 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 17

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

MIPS32 Operating Modes

The MIPS32 PRA requires two operating mode: User Mode and Kernel Mode. When operating in User Mode, the
programmer has access to the CPU and FPU registers that are provided by the ISA and to a flat, uniform virtual mem-
ory address space. When operating in Kernel Mode, the system programmer has access to the full capabilities of the
processor, including the ability to change virtual memory mapping, control the system environment, and context
switch between processes.

 In addition, the MIPS32 PRA supports the implementation of two additional modes: Supervisor Mode and EJTAG
Debug Mode. Refer to the EJTAG specification for a description of Debug Mode.

In Release 2 of the Architecture, support was added for 64-bit coprocessors (and, in particular, 64-bit floating point
units) with 32-bit CPUs. As such, certain floating point instructions which were previously enabled by 64-bit opera-
tions on a MIPS64 processor are now enabled by a new 64-bit floating point operations enabled.

3.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the CP0 Debug
register is a one. If the processor is running in Debug Mode, it has full access to all resources that are available to Ker-
nel Mode operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is a zero (if the processor imple-
ments Debug Mode), and any of the following three conditions is true:

• The KSU field in the CP0 Status register contains 0b00

• The EXL bit in the Status register is one

• The ERL bit in the Status register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an ERET instruction.

3.3 Supervisor Mode

The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when all of
the following conditions are true:

• The DM bit in the Debug register is a zero (if the processor implements Debug Mode)

 MIPS32 Operating Modes

18 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

• The KSU field in the Status register contains 0b01

• The EXL and ERL bits in the Status register are both zero

3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero (if the processor implements Debug Mode)

• The KSU field in the Status register contains 0b10

• The EXL and ERL bits in the Status register are both zero

3.5 Other Modes

3.5.1 64-bit Floating Point Operations Enable

Instructions that are implemented by a 64-bit floating point unit are legal under any of the following conditions:

• In an implementation of Release 1 of the Architecture, 64-bit floating point operations are never enabled in a
MIPS32 processor.

• If an implementation of Release 2 of the Architecture, 64-bit floating point operations are enabled if the F64 bit
in the FIR register is a one. The processor must also implement the floating point data type.

3.5.2 64-bit FPR Enable

Access to 64-bit FPRs is controlled by the FR bit in the Status register. If the FR bit is one, the FPRs are interpreted as
32 64-bit registers that may contain any data type. If the FR bit is zero, the FPRs are interpreted as 32 32-bit registers,
any of which may contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-odd pairs of
registers.

64-bit FPRs are supported in a MIPS64 processor in Release 1 of the Architecture, or in a 64-bit floating point unit,
for both MIPS32 and MIPS64 processors, in Release 2 of the Architecture.

The operation of the processor is UNPREDICTABLE under the following conditions:

• The FR bit is a zero, 64-bit operations are enabled, and a floating point instruction is executed whose datatype is
L or PS.

• The FR bit is a zero and an odd register is referenced by an instruction whose datatype is 64-bits

3.5.3 Coprocessor 0 Enable

Access to Coprocessor 0 registers are enabled under any of the following conditions:

• The processor is running in Kernel Mode or Debug Mode, as defined above

• The CU0 bit in the Status register is one.

Chapter 4

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 19

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Virtual Memory

4.1 Support in Release 1 and Release 2 of the Architecture

4.1.1 Virtual Memory

In Release 1 of the Architecture, the minimum page size was 4KB, with optional support for pages as large as
256MB. In Release 2 of the Architecture, optional support for 1KB pages was added for use in specific embedded
applications that require access to pages smaller than 4KB. Such usage is expected to be in conjunction with a default
page size of 4KB and is not intended or suggested to replace the default 4KB page size but, rather, to augment it.

Support for 1KB pages involves the following changes:

• Addition of the PageGrain register. This register is also used by the SmartMIPS™ ASE specification, but bits
used by Release 2 of the Architecture and the SmartMIPS ASE specification do not overlap.

• Modification of the EntryHi register to enable writes to, and use of, bits 12..11 (VPN2X).

• Modification of the PageMask register to enable writes to, and use of, bits 12..11 (MaskX).

• Modification of the EntryLo0 and EntryLo1 registers to shift the PFN field to the left by 2 bits, when 1KB page
support is enabled, to create space for two lower-order physical address bits.

Support for 1KB pages is denoted by the Config3SP bit and enabled by the PageGrainESP bit.

4.2 Terminology

4.2.1 Address Space

An Address Space is the range of all possible addresses that can be generated. There is one 32-bit Address Space in
the MIPS32 Architecture.

4.2.2 Segment and Segment Size

A Segment is a defined subset of an Address Space that has self-consistent reference and access behavior. Segments

are either 229 or 231 bytes in size, depending on the specific Segment.

4.2.3 Physical Address Size (PABITS)

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical

address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes. The format of the

EntryLo0 and EntryLo1 registers implicitly limits the physical address size to 236 bytes. Software may determine the

 Virtual Memory

20 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

value of PABITS by writing all ones to the EntryLo0 or EntryLo1 registers and reading the value back. Bits read as
“1” from the PFN field allow software to determine the boundary between the PFN and 0 fields to calculate the value
of PABITS.

4.3 Virtual Address Spaces

The MIPS32 virtual address space is divided into five segments as shown in Figure 4-1.

Figure 4-1 Virtual Address Space

Each Segment of an Address Space is classified as “Mapped” or “Unmapped”. A “Mapped” address is one that is
translated through the TLB or other address translation unit. An “Unmapped” address is one which is not translated
through the TLB and which provides a window into the lowest portion of the physical address space, starting at phys-
ical address zero, and with a size corresponding to the size of the unmapped Segment.

Additionally, the kseg1 Segment is classified as “Uncached”. References to this Segment bypass all levels of the
cache hierarchy and allow direct access to memory without any interference from the caches.

0x0000 0000

useg

0x7FFF FFFF

User Mapped

Kernel Unmapped

0x8000 0000

kseg0

0x9FFF FFFF

Kernel Unmapped Uncached

0xA000 0000

kseg1

0xBFFF FFFF

Supervisor Mapped

0xC000 0000

ksseg

0xDFFF FFFF

Kernel Mapped

0xE000 0000

kseg3

0xFFFF FFFF

4.3 Virtual Address Spaces

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 21

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 4.1 lists the same information in tabular form. Each Segment of an Address Space is associated with one of the

three processor operating modes (User, Supervisor, or Kernel). A Segment that is associated with a particular mode is
accessible if the processor is running in that or a more privileged mode. For example, a Segment associated with User
Mode is accessible when the processor is running in User, Supervisor, or Kernel Modes. A Segment is not accessible
if the processor is running in a less privileged mode than that associated with the Segment. For example, a Segment
associated with Supervisor Mode is not accessible when the processor is running in User Mode and such a reference
results in an Address Error Exception. The “Reference Legal from Mode(s)” column in Table 4-2 lists the modes
from which each Segment may be legally referenced.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For exam-
ple, the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a refer-
ence to the same Segment from kernel mode.

Table 4.1 Virtual Memory Address Spaces

VA31..29

Segment
Name(s) Address Range

Associated
with Mode

Reference
Legal from

Mode(s)

Actual
Segment

Size

0b111 kseg3 0xFFFF FFFF
through

0xE000 0000

Kernel Kernel 229 bytes

0b110 sseg
ksseg

0xDFFF FFFF
through

0xC000 0000

Supervisor Supervisor
Kernel

229 bytes

0b101 kseg1 0xBFFF FFFF
through

0xA000 0000

Kernel Kernel 229 bytes

0b100 kseg0 0x9FFF FFFF
through

0x8000 0000

Kernel Kernel 229 bytes

0b0xx useg
suseg
kuseg

0x7FFF FFFF
through

0x0000 0000

User User
Supervisor

Kernel

231 bytes

 Virtual Memory

22 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 4-6 shows the Address Space as seen when the processor is operating in each of the operating modes.

Figure 4-2 References as a Function of Operating Mode

4.4 Compliance

A MIPS32 compliant processor must implement the following Segments:

• useg/kuseg

• kseg0

• kseg1

In addition, a MIPS32 compliant processor using the TLB-based address translation mechanism must also implement
the kseg3 Segment.

User Mapped

0x0000 0000

kuseg

0x7FFF FFFF

Kernel
Unmapped

0x8000 0000

kseg0

0x9FFF FFFF

Kernel
Unmapped
Uncached

0xA000 0000

kseg1

0xBFFF FFFF

Supervisor
Mapped

0xC000 0000

ksseg

0xDFFF FFFF

Kernel Mapped

0xE000 0000

kseg3

0xFFFF FFFF

Kernel Mode References

User Mapped

0x0000 0000

suseg

0x7FFF FFFF

Address Error

0x8000 0000

0xBFFF FFFF

Supervisor
Mapped

0xC000 0000

sseg

0xDFFF FFFF

Address Error

0xE000 0000

0xFFFF FFFF

Supervisor Mode References

User Mapped

0x0000 0000

suseg

0x7FFF FFFF

Address Error

0x8000 0000

0xFFFF FFFF

User Mode References

4.5 Access Control as a Function of Address and Operating Mode

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 23

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

4.5 Access Control as a Function of Address and Operating Mode

Table 4.2 enumerates the action taken by the processor for each section of the 32-bit Address Space as a function of
the operating mode of the processor. The selection of TLB Refill vector and other special-cased behavior is also listed
for each reference.

4.6 Address Translation and Cacheability & Coherency Attributes for the
kseg0 and kseg1 Segments

The kseg0 and kseg1 Unmapped Segments provide a window into the least significant 229 bytes of physical memory,
and, as such, are not translated using the TLB or other address translation unit. The cacheability and coherency
attribute of the kseg0 Segment is supplied by the K0 field of the CP0 Config register. The cacheability and coherency

Table 4.2 Address Space Access as a Function of Operating Mode

Virtual Address Range
Segment
Name(s)

Action when Referenced from Operating Mode

User Mode
Supervisor

Mode Kernel Mode

0xFFFF FFFF

through

0xE000 0000

kseg3 Address Error Address Error Mapped

See Section 4.8 for special
behavior when DebugDM = 1

0xDFFF FFFF

through

0xC000 0000

sseg
ksseg

Address Error Mapped Mapped

0xBFFF FFFF

through

0xA000 0000

kseg1 Address Error Address Error Unmapped, Uncached

See Section 4.6

0x9FFF FFFF

through

0x8000 0000

kseg0 Address Error Address Error Unmapped

See Section 4.6

0x7FFF FFFF

through

0x0000 0000

useg
suseg
kuseg

Mapped Mapped Unmapped if StatusERL=1

See Section 4.7

Mapped if StatusERL=0

 Virtual Memory

24 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

attribute for the kseg1 Segment is always Uncached. Table 4.3 describes how this transformation is done, and the
source of the cacheability and coherency attributes for each Segment.

4.7 Address Translation for the kuseg Segment when StatusERL = 1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segment, similar
to the kseg1 Segment, if the ERL bit is set in the Status register. This allows the cache error exception code to oper-
ate uncached using GPR R0 as a base register to save other GPRs before use.

4.8 Special Behavior for the kseg3 Segment when DebugDM = 1

If EJTAG is implemented on the processor, the EJTAG block must treat the virtual address range 0xFF20 0000
through 0xFF3F FFFF, inclusive, as a special memory-mapped region in Debug Mode. A MIPS32 compliant
implementation that also implements EJTAG must:

• explicitly range check the address range as given and not assume that the entire region between 0xFF20 0000
and 0xFFFF FFFF is included in the special memory-mapped region.

• not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specification for details on
this mapping.

4.9 TLB-Based Virtual Address Translation1

This section describes the TLB-based virtual address translation mechanism. Note that sufficient TLB entries must be
implemented to avoid a TLB exception loop on load and store instructions.

Table 4.3 Address Translation and Cacheability and Coherency Attributes for the kseg0 and
kseg1 Segments

Segment Name Virtual Address Range
Generates Physical

Address Cache Attribute

kseg1 0xBFFF FFFF

through

0xA000 0000

0x1FFF FFFF

through

0x0000 0000

Uncached

kseg0 0x9FFF FFFF

through

0x8000 0000

0x1FFF FFFF

through

0x0000 0000

From K0 field of Config
Register

1 Refer to A.1 “Fixed Mapping MMU” on page 155 and A.2 “Block Address Translation” on page 159 for descriptions of
alternative MMU organizations

4.9 TLB-Based Virtual Address Translation

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 25

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

4.9.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual
address across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of
the ASID when doing address translation. In certain circumstances, the operating system may wish to associate the
same virtual address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the
ASID comparison during translation.

4.9.2 TLB Organization

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two logical
components: a comparison section and a physical translation section. The comparison section includes the virtual
page number (VPN2 and, in Release 2, VPNX) (actually, the virtual page number/2 since each entry maps two physi-
cal pages) of the entry, the ASID, the G(lobal) bit and a recommended mask field which provides the ability to map
different page sizes with a single entry. The physical translation section contains a pair of entries, each of which con-
tains the physical page frame number (PFN), a valid (V) bit, a dirty (D) bit, and a cache coherency field (C), whose
valid encodings are given in Table 8.8. There are two entries in the translation section for each TLB entry because
each TLB entry maps an aligned pair of virtual pages and the pair of physical translation entries corresponds to the
even and odd pages of the pair.

Figure 4-3 shows the logical arrangement of a TLB entry, including the optional support added in Release 2 of the
Architecture for 1KB page sizes. Light grey fields denote extensions to the right that are required to support 1KB
page sizes. This extension is not present in an implementation of Release 1 of the Architecture.

Figure 4-3 Contents of a TLB Entry

The fields of the TLB entry correspond exactly to the fields in the CP0 PageMask, EntryHi, EntryLo0 and
EntryLo1 registers. The even page entries in the TLB (e.g., PFN0) come from EntryLo0. Similarly, odd page entries
come from EntryLo1.

4.9.3 TLB Initialization

In many processor implementations, software must initialize the TLB during the power-up process. In processors that
detect multiple TLB matches and signal this via a machine check assumption, software must be prepared to handle
such an exception or use a TLB initialization algorithm that minimizes or eliminates the possibility of the exception.

Fields marked with this color are optional Release 2 features required to support 1KB pages

V1D1C1PFN1

V0D0C0PFN0

ASIDGVPN2XVPN2

MaskXMask

 Virtual Memory

26 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

In Release 1 of the Architecture, processor implementations could detect and report multiple TLB matches either on a
TLB write (TLBWI or TLBWR instructions) or a TLB read (TLB access or TLBR or TLBP instructions). In Release
2 of the Architecture, processor implentations are limited to reporting multiple TLB matches only on TLB write, and
this is also true of most implementations of Release 1 of the Architecture.

The following code example shows a TLB initialization routine which, on implementations of Release 2 of the Archi-
tecture, eliminates the possibility of reporting a machine check during TLB initialization. This example has equiva-
lent effect on implementations of Release 1 of the Architecture which report multiple TLB exceptions only on a TLB
write, and minimizes the probability of such an exception occuring on other implementations.

/*
* InitTLB
*
* Initialize the TLB to a power-up state, guaranteeing that all entries
* are unique and invalid.
*
* Arguments:
* a0 = Maximum TLB index (from MMUSize field of C0_Config1)
*
* Returns:
* No value
*
* Restrictions:
* This routine must be called in unmapped space
*
* Algorithm:
* va = kseg0_base;
* for (entry = max_TLB_index; entry >= 0, entry--) {
* while (TLB_Probe_Hit(va)) {
* va += Page_Size;
* }
* TLB_Write(entry, va, 0, 0, 0);
* }
*
* Notes:
* - The Hazard macros used in the code below expand to the appropriate
* number of SSNOPs in an implementation of Release 1 of the
* Architecture, and to an ehb in an implementation of Release 2 of
* the Architecture. See , “CP0 Hazards,” on page 65 for
* more additional information.
*/

InitTLB:
/*
* Clear PageMask, EntryLo0 and EntryLo1 so that valid bits are off, PFN values
* are zero, and the default page size is used.
*/

mtc0 zero, C0_EntryLo0 /* Clear out PFN and valid bits */
mtc0 zero, C0_EntryLo1
mtc0 zero, C0_PageMask /* Clear out mask register *

/* Start with the base address of kseg0 for the VA part of the TLB */
la t0, A_K0BASE /* A_K0BASE == 0x8000.0000 */

/*
* Write the VA candidate to EntryHi and probe the TLB to see if if is
* already there. If it is, a write to the TLB may cause a machine
* check, so just increment the VA candidate by one page and try again.

4.9 TLB-Based Virtual Address Translation

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 27

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

*/
10:

mtc0 t0, C0_EntryHi /* Write VA candidate */
TLBP_Write_Hazard() /* Clear EntryHi hazard (ssnop/ehb in R1/2) */
tlbp /* Probe the TLB to check for a match */
TLBP_Read_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
mfc0 t1, C0_Index /* Read back flag to check for match */
bgez t1, 10b /* Branch if about to duplicate an entry */
addiu t0, (1<<S_EntryHiVPN2) /* Add 1 to VPN index in va */

/*
* A write of the VPN candidate will be unique, so write this entry
* into the next index, decrement the index, and continue until the
* index goes negative (thereby writing all TLB entries)
*/

mtc0 a0, C0_Index /* Use this as next TLB index */
TLBW_Write_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index

/*
* Clear Index and EntryHi simply to leave the state constant for all
* returns
*/

mtc0 zero, C0_Index
mtc0 zero, C0_EntryHi
jr ra /* Return to caller */
nop

4.9.4 Address Translation

Release 2 of the Architecture introduced support for 1KB pages. For clarity in the discussion below, the following
terms should be taken in the general sense to include the new Release 2 features:

When an address translation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are true:

• The current process ASID (as obtained from the EntryHi register) matches the ASID field in the TLB entry, or
the G bit is set in the TLB entry.

• The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within the
TLB entry. The “appropriate” number of bits is determined by the Mask fields in each entry by ignoring each bit
in the virtual page number and the TLB VPN2 field corresponding to those bits that are set in the Mask fields.
This allows each entry of the TLB to support a different page size, as determined by the PageMask register at

Term Used Below Release 2 Substitution Comment

VPN2 VPN2 || VPN2X Release 2 implementations that support 1KB
pages concatenate the VPN2 and VPN2X fields
to form the virtual page number for a 1KB page

Mask Mask || MaskX Release 2 implementations that support 1KB
pages concatenate the Mask and MaskX fields to
form the don’t care mask for 1KB pages

 Virtual Memory

28 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

the time that the TLB entry was written. If the recommended PageMask register is not implemented, the TLB
operation is as if the PageMask register was written with the encoding for a 4KB page.

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits are read from the
translation section of the TLB entry. Which of the two PFN entries is read is a function of the virtual address bit
immediately to the right of the section masked with the Mask entry.

The valid and dirty bits determine the final success of the translation. If the valid bit is off, the entry is not valid and a
TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a TLB Modified exception is
raised. If there is an address match with a valid entry and no dirty exception, the PFN and the cache coherency bits are
appended to the offset-within-page bits of the address to form the final physical address with attributes.

For clarity, the TLB lookup processes have been separated into two sets of pseudo code:

1. One used by an implementation of Release 1 of the Architecture, or an implementation of Release 2 of the Archi-
tecture which does not include 1KB page support (as denoted by Config3SP). This instance is called the “4KB
TLB Lookup”.

2. One used by an implementation of Release 2 of the Architecture which does include 1KB page support. This
instance is called the “1KB TLB Lookup”.

The 4KB TLB Lookup pseudo code is as follows:

found ← 0
for i in 0...TLBEntries-1

if ((TLB[i]VPN2 and not (TLB[i]Mask)) = (va31..13 and not (TLB[i]Mask))) and
 (TLB[i]G or (TLB[i]ASID = EntryHiASID)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all page sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[i]Mask

0b0000 0000 0000 0000: EvenOddBit ← 12 /* 4KB page */
0b0000 0000 0000 0011: EvenOddBit ← 14 /* 16KB page */
0b0000 0000 0000 11xx: EvenOddBit ← 16 /* 64KB page */
0b0000 0000 0011 xxxx: EvenOddBit ← 18 /* 256KB page */
0b0000 0000 11xx xxxx: EvenOddBit ← 20 /* 1MB page */
0b0000 0011 xxxx xxxx: EvenOddBit ← 22 /* 4MB page */
0b0000 11xx xxxx xxxx: EvenOddBit ← 24 /* 16MB page */
0b0011 xxxx xxxx xxxx: EvenOddBit ← 26 /* 64MB page */
0b11xx xxxx xxxx xxxx: EvenOddBit ← 28 /* 256MB page */
otherwise: UNDEFINED

endcase
if vaEvenOddBit = 0 then

pfn ← TLB[i]PFN0
v ← TLB[i]V0
c ← TLB[i]C0
d ← TLB[i]D0

else
pfn ← TLB[i]PFN1
v ← TLB[i]V1
c ← TLB[i]C1
d ← TLB[i]D1

endif

4.9 TLB-Based Virtual Address Translation

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 29

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

if v = 0 then
SignalException(TLBInvalid, reftype)

endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
pfnPABITS-1-12..0 corresponds to paPABITS-1..12
pa ← pfnPABITS-1-12..EvenOddBit-12 || vaEvenOddBit-1..0
found ← 1
break

endif
endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

The 1KB TLB Lookup pseudo code is as follows:

found ← 0
for i in 0...TLBEntries-1

if ((TLB[i]VPN2 and not (TLB[i]Mask)) = (va31..13 and not (TLB[i]Mask))) and
 (TLB[i]G or (TLB[i]ASID = EntryHiASID)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all pages sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[i]Mask

0b0000 0000 0000 0000 00: EvenOddBit ← 10 /* 1KB page */
0b0000 0000 0000 0000 11: EvenOddBit ← 12 /* 4KB page */
0b0000 0000 0000 0011 xx: EvenOddBit ← 14 /* 16KB page */
0b0000 0000 0000 11xx xx: EvenOddBit ← 16 /* 64KB page */
0b0000 0000 0011 xxxx xx: EvenOddBit ← 18 /* 256KB page */
0b0000 0000 11xx xxxx xx: EvenOddBit ← 20 /* 1MB page */
0b0000 0011 xxxx xxxx xx: EvenOddBit ← 22 /* 4MB page */
0b0000 11xx xxxx xxxx xx: EvenOddBit ← 24 /* 16MB page */
0b0011 xxxx xxxx xxxx xx: EvenOddBit ← 26 /* 64MB page */
0b11xx xxxx xxxx xxxx xx: EvenOddBit ← 28 /* 256MB page */
otherwise: UNDEFINED

endcase
if vaEvenOddBit = 0 then

pfn ← TLB[i]PFN0
v ← TLB[i]V0
c ← TLB[i]C0
d ← TLB[i]D0

else
pfn ← TLB[i]PFN1
v ← TLB[i]V1
c ← TLB[i]C1
d ← TLB[i]D1

endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif

 Virtual Memory

30 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

pfnPABITS-1-10..0 corresponds to paPABITS-1..10
pa ← pfnPABITS-1-10..EvenOddBit-10 || vaEvenOddBit-1..0
found ← 1
break

endif
endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

Table 4.4 demonstrates how the physical address is generated as a function of the page size of the TLB entry that
matches the virtual address. The “Even/Odd Select” column of Table 4.4 indicates which virtual address bit is used to
select between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA(PABITS-1)..0 Gener-
ated From” columns specify how the physical address is generated from the selected PFN and the offset-in-page bits
in the virtual address. In this column, PFN is the physical page number as loaded into the TLB from the EntryLo0 or
EntryLo1 registers, and has one of two bit ranges:

PFN Range PA Range Comment

PFN(PABITS-1)-12..0 PAPABITS-1..12 Release 1 implementation, or Release 2 imple-
mentation without support for 1KB pages

PFN(PABITS-1)-10..0 PAPABITS-1..10 Release 2 implementation with support for 1KB
pages enabled

Table 4.4 Physical Address Generation

Page Size
Even/Odd

Select

PA(PABITS-1)..0 Generated From:

Release 1 or Release 2 with 1KB
Page Support Disabled

Release 2 with 1KB Page
Support Enabled

1K Bytes VA10 Not Applicable PFN(PABITS-1)-10..0 || VA9..0

4K Bytes VA12 PFN(PABITS-1)-12..0 || VA11..0 PFN(PABITS-1)-10..2 || VA11..0

16K Bytes VA14 PFN(PABITS-1)-12..2 || VA13..0 PFN(PABITS-1)-10..4 || VA13..0

64K Bytes VA16 PFN(PABITS-1)-12..4 || VA15..0 PFN(PABITS-1)-10..6 || VA15..0

256K Bytes VA18 PFN(PABITS-1)-12..6 || VA17..0 PFN(PABITS-1)-10..8 || VA17..0

1M Bytes VA20 PFN(PABITS-1)-12..8 || VA19..0 PFN(PABITS-1)-10..10 || VA19..0

4M Bytes VA22 PFN(PABITS-1)-12..10 || VA21..0 PFN(PABITS-1)-10..12 || VA21..0

16M Bytes VA24 PFN(PABITS-1)-12..12 || VA23..0 PFN(PABITS-1)-10..14 || VA23..0

64MBytes VA26 PFN(PABITS-1)-12..14 || VA25..0 PFN(PABITS-1)-10..16 || VA25..0

256MBytes VA28 PFN(PABITS-1)-12..16 || VA27..0 PFN(PABITS-1)-10..18 || VA27..0

Chapter 5

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 31

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Interrupts and Exceptions

Release 2 of the Architecture added the following features related to the processing of Exceptions and Interrupts:

• The addition of the Coprocessor 0 EBase register, which allows the exception vector base address to be modi-
fied for exceptions that occur when StatusBEV equals 0. The EBase register is required.

• The extension of the Release 1 interrupt control mechanism to include two optional interrupt modes:

• Vectored Interrupt (VI) mode, in which the various sources of interrupts are prioritized by the processor and
each interrupt is vectored directly to a dedicated handler. When combined with GPR shadow registers, intro-
duced in the next chapter, this mode significantly reduces the number of cycles required to process an inter-
rupt.

• External Interrupt Controller (EIC) mode, in which the definition of the coprocessor 0 register fields associ-
ated with interrupts changes to support an external interrupt controller. This can support many more priori-
tized interrupts, while still providing the ability to vector an interrupt directly to a dedicated handler and take
advantage of the GPR shadow registers.

• The ability to stop the Count register for highly power-sensitive applications in which the Count register is not
used, or for reduced power mode. This change is required.

• The addition of the DI and EI instructions which provide the ability to atomically disable or enable interrupts.
Both instructions are required.

• The addition of the TI and PCI bits in the Cause register to denote pending timer and performance counter inter-
rupts. This change is required.

• The addition of an execution hazard sequence which can be used to clear hazards introduced when software
writes to a coprocessor 0 register which affects the interrupt system state.

5.1 Interrupts

Release 1 of the Architecture included support for two software interrupts, six hardware interrupts, and two spe-
cial-purpose interrupts: timer and performance counter. The timer and performance counter interrupts were combined
with hardware interrupt 5 in an implementation-dependent manner. Interrupts were handled either through the general
exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of CauseIV. Software was
required to prioritize interrupts as a function of the CauseIP bits in the interrupt handler prologue.

Release 2 of the Architecture adds an upward-compatible extension to the Release 1 interrupt architecture that sup-
ports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports the use of an external inter-
rupt controller by changing the interrupt architecture.

Although a Non-Maskable Interrupt (NMI) includes “interrupt” in its name, it is more correctly described as an NMI
exception because it does not affect, nor is it controlled by the processor interrupt system.

 Interrupts and Exceptions

32 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

An interrupt is only taken when all of the following are true:

• A specific request for interrupt service is made, as a function of the interrupt mode, described below.

• The IE bit in the Status register is a one.

• The DM bit in the Debug register is a zero (for processors implementing EJTAG)

• The EXL and ERL bits in the Status register are both zero.

Logically, the request for interrupt service is ANDed with the IE bit of the Status register. The final interrupt request
is then asserted only if both the EXL and ERL bits in the Status register are zero, and the DM bit in the Debug regis-
ter is zero, corresponding to a non-exception, non-error, non-debug processing mode, respectively.

5.1.1 Interrupt Modes

An implementation of Release 1 of the Architecture only implements interrupt compatibility mode.

An implementation of Release 2 of the Architecture may implement up to three interrupt modes:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture. This mode is required.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. This mode is optional and its
presence is denoted by the VInt bit in the Config3 register.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This mode is
optional and its presence is denoted by the VEIC bit in the Config3 register.

A compatible implementation of Release 2 of the Architecture must implement interrupt compatibility mode, and
may optionally implement one or both vectored interrupt modes. Inclusion of the optional modes may be done selec-
tively in the implementation of the processor, or they may always be implemented and be dynamically enabled based
on coprocessor 0 control bits. The reset state of the processor is to interrupt compatibility mode such that an imple-
mentation of Release 2 of the Architecture is fully compatible with implementations of Release 1 of the Architecture.

Table 5.1 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

Table 5.1 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

5.1 Interrupts

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 33

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

5.1.1.1 Interrupt Compatibility Mode

This is the only interrupt mode for a Release 1 processor and the default interrupt mode for a Release 2 processor.
This mode is entered when a Reset exception occurs. In this mode, interrupts are non-vectored and dispatched though
exception vector offset 0x180 (if CauseIV = 0) or vector offset 0x200 (if CauseIV = 1). This mode is in effect if any of
the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

The current interrupt requests are visible via the IP field in the Cause register on any read of the register (not just after
an interrupt exception has occurred). Note that an interrupt request may be deasserted between the time the processor
starts the interrupt exception and the time that the software interrupt handler runs. The software interrupt handler
must be prepared to handle this condition by simply returning from the interrupt via ERET. A request for interrupt
service is generated as shown in Table 5.2.

0 1 ≠0 x 1 External Interrupt Controller

0 1 ≠0 0 0 Not Allowed - IntCtlVS is zero if neither Vectored Inter-

rupt nor External Interrupt Controller mode are imple-
mented.

“x” denotes don’t care

Table 5.2 Request for Interrupt Service in Interrupt Compatibility Mode

Interrupt Type
Interrupt
Source

Interrupt Request
Calculated From

Hardware Interrupt, Timer Interrupt, or Perfor-
mance Counter Interrupt

HW5 CauseIP7 and StatusIM7

Hardware Interrupt HW4 CauseIP6 and StatusIM6

HW3 CauseIP5 and StatusIM5

HW2 CauseIP4 and StatusIM4

HW1 CauseIP3 and StatusIM3

HW0 CauseIP2 and StatusIM2

Software Interrupt SW1 CauseIP1 and StatusIM1

SW0 CauseIP0 and StatusIM0

Table 5.1 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

 Interrupts and Exceptions

34 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

A typical software handler for interrupt compatibility mode might look as follows:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*

5.1 Interrupts

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 35

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

5.1.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This
mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Interrupt
mode is in effect if all of the following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

 Interrupts and Exceptions

36 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
and performance counter interrupts are combined in an implementation-dependent way with the hardware interrupts
(with the interrupt with which they are combined indicated by IntCtlIPTI and IntCtlIPPCI, respectively) to provide the
appropriate relative priority of these interrupts with that of the hardware interrupts. The processor interrupt logic
ANDs each of the CauseIP bits with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are
enabled (StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority encoder scans the val-
ues in the order shown in Table 5.3.

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs an
encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
shown pictorially in Figure 5-1.

Table 5.3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt Request
Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority Hardware HW5 CauseIP7 and StatusIM7 7

HW4 CauseIP6 and StatusIM6 6

HW3 CauseIP5 and StatusIM5 5

HW2 CauseIP4 and StatusIM4 4

HW1 CauseIP3 and StatusIM3 3

HW0 CauseIP2 and StatusIM2 2

Software SW1 CauseIP1 and StatusIM1 1

Lowest Priority SW0 CauseIP0 and StatusIM0 0

5.1 Interrupts

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 37

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 5-1 Interrupt Generation for Vectored Interrupt Mode

Note that an interrupt request may be deasserted between the time the processor detects the interrupt request and the
time that the software interrupt handler runs. The software interrupt handler must be prepared to handle this condition
by simply returning from the interrupt via ERET.

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the IVexcep-
tion label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dis-
patching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt
handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */

IP7

IP6

IP5

IP4

IP3

IP2

IP1

IP0

IM7

IM6

IM5

IM4

IM3

IM2

IM1

IM0

Pr
io

ri
ty

 E
nc

od
e

HW5

HW4

HW3

HW2

HW1

HW0

C
om

bi
ne

CauseTI

CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch Mask Encode

Any
Request

O
ff

se
t G

en
er

a-
to

r

IntCtlVS

Exception
Vector Offset

Generate

SRSMap

Shadow Set
Number

IntCtlIPPCI

IntCtlIPTI

 Interrupts and Exceptions

38 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

5.1.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide sup-
port for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
number (and optionally the priority level) of the highest priority interrupt. EIC interrupt mode is in effect if all of the
following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0), the timer inter-
rupt request (CauseTI), and the performance counter interrupt request (CausePCI) to the external interrupt controller,
where it prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt control-

5.1 Interrupts

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 39

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

ler can be a hard-wired logic block, or it can be configurable based on control and status registers. This allows the
interrupt controller to be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the priority level and the vector number
of the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level
(RIPL), is a 6-bit encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are
pending. The values 1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt
controller passes this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC interrupt
mode. One implementation option is to treat the RIPL value as the vector number for the processor. The other imple-
mentation option is to send a separate vector number along with the RIPL to the processor.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. Because CauseRIPL is only loaded by the processor
when an interrupt exception is signaled, it is available to software during interrupt processing. The vector number that
the EIC passes into the core is combined with the IntCtlVS to determine where the interrupt service routines is
located. The vector number is not stored in any software visible register. Some implementations may choose to use
the RIPL as the vector number, but this is not a requirement.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
CauseRIPL, it also loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the inter-
rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 5-2.

 Interrupts and Exceptions

40 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 5-2 Interrupt Generation for External Interrupt Controller Interrupt Mode

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the IVexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt code shown
above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
CauseRIPL to StatusIPL to prevent lower priority interrupts from interrupting the handler. Such a routine might look as
follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */

CauseTI
CausePCI

StatusIE

Interrupt
Request

Vector
Number

Latch CompareEncode

Any
Request

O
ff

se
t G

en
er

a-
to

r

IntCtlVS

Exception
Vector Offset

Generate

Shadow Set
Number

E
xt

er
na

l I
nt

er
ru

pt
 C

on
tr

ol
le

r

In
te

rr
up

t S
ou

rc
es

Sh
ad

ow
 S

et
M

ap
pi

ng

CauseIP1
CauseIP0

Requested
IPL

C
au

se
R

IP
L

St
at

us
IP

L

SR
SC

tl E
IC

SS

RIPL
>

IPL?

Load
Fields

Interrupt
Exception

Interrupt Service
Started

RIPL(optional)

5.1 Interrupts

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 41

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

5.1.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 0x200 to create the
exception vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt
mode, the vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The IntCtlVS field
specifies the spacing between vector locations. If this value is zero (the default reset state), the vector spacing is zero
and the processor reverts to Interrupt Compatibility Mode. A non-zero value enables vectored interrupts, and Table
5.4 shows the exception vector offset for a representative subset of the vector numbers and values of the IntCtlVS

field.

Table 5.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

0b00001 0b00010 0b00100 0b01000 0b10000

0 0x0200 0x0200 0x0200 0x0200 0x0200

1 0x0220 0x0240 0x0280 0x0300 0x0400

2 0x0240 0x0280 0x0300 0x0400 0x0600

3 0x0260 0x02C0 0x0380 0x0500 0x0800

4 0x0280 0x0300 0x0400 0x0600 0x0A00

5 0x02A0 0x0340 0x0480 0x0700 0x0C00

6 0x02C0 0x0380 0x0500 0x0800 0x0E00

7 0x02E0 0x03C0 0x0580 0x0900 0x1000

•
•
•

 Interrupts and Exceptions

42 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 0x200 + (vectorNumber × (IntCtlVS || 0b00000))

5.1.2.1 Software Hazards and the Interrupt System

Software writes to certain coprocessor 0 register fields may change the conditions under which an interrupt is taken.
This creates a coprocessor 0 (CP0) hazard, as described in the chapter “CP0 Hazards” on page 65. In Release 1 of the
Architecture, there was no architecturally-defined method for bounding the number of instructions which would be
executed after the instruction which caused the interrupt state change and before the change to the interrupt state was
seen. In Release 2 of the Architecture, the EHB instruction was added, and this instruction can be used by software to
clear the hazard.

Table 5.5 lists the CP0 register fields which can cause a change to the interrupt state (either enabling interrupts which
were previously disabled or disabling interrupts which were previously enabled).

An EHB, executed after one of these fields is modified by the listed instruction, makes the change to the interrupt
state visible no later than the instruction following the EHB.

In the following example, a change to the CauseIM field is made visible by an EHB:

mfc0 k0, C0_Status
ins k0, zero, S_StatusIM4, 1 /* Clear bit 4 of the IM field */
mtc0 k0, C0_Status /* Re-write the register */
ehb /* Clear the hazard */
/* Change to the interrupt state is seen no later than this instruction */

Similarly, the effects of an DI instruction are made visible by an EHB:

di /* Disable interrupts */

61 0x09A0 0x1140 0x2080 0x3F00 0x7C00

62 0x09C0 0x1180 0x2100 0x4000 0x7E00

63 0x09E0 0x11C0 0x2180 0x4100 0x8000

Table 5.5 Interrupt State Changes Made Visible by EHB

Instruction(s) CP0 Register Written
CP0 Register Field(s)

Modified

MTC0 Status IM, IPL, ERL, EXL, IE

EI, DI Status IE

MTC0 Cause IP1..0

MTC0 PerfCnt Control IE

MTC0 PerfCnt Counter Event Count

Table 5.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

0b00001 0b00010 0b00100 0b01000 0b10000

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 43

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

ehb /* Clear the hazard */
/* Change to the interrupt state is seen no later than this instruction */

5.2 Exceptions

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated as a
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruc-
tion stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the soft-
ware exception handler are a function of both the type of exception, and the current state of the processor.

5.2.1 Exception Priority

Table 5.6 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 5.6 Priority of Exceptions

Exception Description Type

Reset The Cold Reset signal was asserted to the processor Asynchronous
Reset

Soft Reset The Reset signal was asserted to the processor

Debug Single Step An EJTAG Single Step occurred. Prioritized above other excep-
tions, including asynchronous exceptions, so that one can sin-
gle-step into interrupt (or other asynchronous) handlers.

Synchronous
Debug

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
Debug

Imprecise Debug Data Break An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt (NMI) The NMI signal was asserted to the processor. Asynchronous

Machine Check An internal inconsistency was detected by the processor.

Interrupt An enabled interrupt occurred.

Deferred Watch A watch exception, deferred because EXL was one when the
exception was detected, was asserted after EXL went to zero.

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized
above instruction fetch exceptions to allow break on illegal instruc-
tion addresses.

Synchronous
Debug

Watch - Instruction fetch A watch address match was detected on an instruction fetch. Prior-
itized above instruction fetch exceptions to allow watch on illegal
instruction addresses.

Synchronous

Address Error - Instruction fetch A non-word-aligned address was loaded into PC.

TLB Refill - Instruction fetch A TLB miss occurred on an instruction fetch.

TLB Invalid - Instruction fetch The valid bit was zero in the TLB entry mapping the address refer-
enced by an instruction fetch.

Cache Error - Instruction fetch A cache error occurred on an instruction fetch.

Bus Error - Instruction fetch A bus error occurred on an instruction fetch.

 Interrupts and Exceptions

44 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

The “Type” column of Table 5.7 describes the type of exception. Table 5.8 explains the characteristics of each excep-
tion type.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug

Instruction Validity Exceptions An instruction could not be completed because it was not allowed
access to the required resources, or was illegal: Coprocessor Unus-
able, Reserved Instruction. If both exceptions occur on the same
instruction, the Coprocessor Unusable Exception takes priority
over the Reserved Instruction Exception.

Synchronous

Execution Exception An instruction-based exception occurred: Integer overflow, trap,
system call, breakpoint, floating point, coprocessor 2 exception.

Precise Debug Data Break A precise EJTAG data break on load/store (address match only) or
a data break on store (address+data match) condition was asserted.
Prioritized above data fetch exceptions to allow break on illegal
data addresses.

Synchronous
Debug

Watch - Data access A watch address match was detected on the address referenced by
a load or store. Prioritized above data fetch exceptions to allow
watch on illegal data addresses.

Synchronous

Address error - Data access An unaligned address, or an address that was inaccessible in the
current processor mode was referenced, by a load or store instruc-
tion

TLB Refill - Data access A TLB miss occurred on a data access

TLB Invalid - Data access The valid bit was zero in the TLB entry mapping the address refer-
enced by a load or store instruction

TLB Modified - Data access The dirty bit was zero in the TLB entry mapping the address refer-
enced by a store instruction

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

AsynchronousBus Error - Data access A bus error occurred on a load or store data reference

Precise Debug Data Break A precise EJTAG data break on load (address+data match only)
condition was asserted. Prioritized last because all aspects of the
data fetch must complete in order to do data match.

Synchronous
Debug

Table 5.7 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution.
These exceptions always have the highest priority to guarantee that the processor can
always be placed in a runnable state.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-
tion. These exceptions have very high priority with respect to other exceptions because
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous.

Table 5.6 Priority of Exceptions

Exception Description Type

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 45

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

5.2.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFC0.0000. EJTAG Debug excep-
tions are vectored to location 0xBFC0.0480, or to location 0xFF20.0200 if the ProbTrap bit is zero or one,
respectively, in the EJTAG_Control_register.

Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release 1 of the
architecture, the vector base address was fixed. In Release 2 of the architecture, software is allowed to specify the
vector base address via the EBase register for exceptions that occur when StatusBEV equals 0. Table 5.8 gives the
vector base address as a function of the exception and whether the BEV bit is set in the Status register. Table 5.9
gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the Cause register
causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector. For implementa-
tions of Release 2 of the Architecture, Table 5.4 gives the offset from the base address in the case where StatusBEV =
0 and CauseIV = 1. For implementations of Release 1 of the architecture in which CauseIV = 1, the vector offset is as
if IntCtlVS were 0.

Table 5.10 combines these two tables into one that contains all possible vector addresses as a function of the state that
can affect the vector selection. To avoid complexity in the table, the vector address value assumes that the EBase reg-
ister, as implemented in Release 2 devices, is not changed from its reset state and that IntCtlVS is 0.

In Release 2 of the Architecture, software must guarantee that EBase15..12 contains zeros in all bit positions less than
or equal to the most significant bit in the vector offset. This situation can only occur when a vector offset greater than
0xFFF is generated when an interrupt occurs with VI or EIC interrupt mode enabled. The operation of the processor
is UNDEFINED if this condition is not met.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execu-
tion. These exceptions are shown with higher priority than synchronous exceptions
mainly for notational convenience. If one thinks of asynchronous exceptions as occur-
ring between instructions, they are either the lowest priority relative to the previous
instruction, or the highest priority relative to the next instruction. The ordering of the
table above considers them in the second way.

Synchronous Debug Denotes an EJTAG debug exception that occurs as a result of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to allow entry to Debug
Mode, even in the presence of other exceptions.

Synchronous Denotes any other exception that occurs as a result of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These
exceptions tend to be prioritized below other types of exceptions, but there is a relative
priority of synchronous exceptions with each other.

Table 5.7 Exception Type Characteristics

Exception Type Characteristics

 Interrupts and Exceptions

46 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 5.8 Exception Vector Base Addresses

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 0xBFC0.0000

EJTAG Debug (with ProbTrap = 0 in
the EJTAG_Control_register)

0xBFC0.0480

EJTAG Debug (with ProbTrap = 1 in
the EJTAG_Control_register)

0xFF20.0200

Cache Error For Release 1 of the architecture:
0xA000.0000

For Release 2 of the architecture:
EBase31..30 || 1 || EBase28..12 ||

0x000
Note that EBase31..30 have the

fixed value 0b10

0xBFC0.0200

Other For Release 1 of the architecture:
0x8000.0000

For Release 2 of the architecture:
EBase31..12 || 0x000

Note that EBase31..30 have the

fixed value 0b10

0xBFC0.0200

Table 5.9 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL = 0 0x000

Cache error 0x100

General Exception 0x180

Interrupt, CauseIV = 1 0x200 (In Release 2 implementa-
tions, this is the base of the vectored
interrupt table when StatusBEV = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 47

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

5.2.3 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 8.26 on page 110). The value loaded
into the EPC register is dependent on whether the processor implements the MIPS16 ASE, and whether the
instruction is in the delay slot of a branch or jump which has delay slots. Table 5.11 shows the value stored in
each of the CP0 PC registers, including EPC. For implementations of Release 2 of the Architecture if StatusBEV

= 0, the CSS field in the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appro-
priate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

Table 5.10 Exception Vectors

Exception StatusBEV StatusEXL CauseIV

EJTAG
ProbEn

Vector

For Release 2 Implementations,
assumes that EBase retains its
reset state and that IntCtlVS = 0

Reset, Soft Reset,
NMI

x x x x 0xBFC0.0000

EJTAG Debug x x x 0 0xBFC0.0480

EJTAG Debug x x x 1 0xFF20.0200

TLB Refill 0 0 x x 0x8000.0000

TLB Refill 0 1 x x 0x8000.0180

TLB Refill 1 0 x x 0xBFC0.0200

TLB Refill 1 1 x x 0xBFC0.0380

Cache Error 0 x x x 0xA000.0100

Cache Error 1 x x x 0xBFC0.0300

Interrupt 0 0 0 x 0x8000.0180

Interrupt 0 0 1 x 0x8000.0200

Interrupt 1 0 0 x 0xBFC0.0380

Interrupt 1 0 1 x 0xBFC0.0400

All others 0 x x x 0x8000.0180

All others 1 x x x 0xBFC0.0380

‘x’ denotes don’t care

 Interrupts and Exceptions

48 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

.

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset ← 0x180
else

if InstructionInBranchDelaySlot then
EPC ← restartPC/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 0x000
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset ← 0x180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset ← 0x200
else

Table 5.11 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with the ISA Mode bit

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 49

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

if Config3VEIC = 1 then
VecNum ← CauseRIPL
NewShadowSet ← SRSCtlEICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL×4+3..IPL×4

endif
vectorOffset ← 0x200 + (VecNum × (IntCtlVS || 0b00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) then

SRSCtlPSS ← SRSCtlCSS
SRSCtlCSS ← NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 0xBFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31..12 || 0x000

else
vectorBase ← 0x8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset. Vector */
/* offsets > 0xFFF (vectored or EIC interrupts only), require */
/* that EBase15..12 have zeros in each bit position less than or */
/* equal to the most significant bit position of the vector offset */
PC ← vectorBase31..30 || (vectorBase29..0 + vectorOffset29..0)

/* No carry between bits 29 and 30 */

5.2.4 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJTAG
Specification for details of this exception.

Entry Vector Used

0xBFC0 0480 if the ProbTrap bit is zero in the EJTAG_Control_register; 0xFF20 0200 if the ProbTrap bit is
one.

 Interrupts and Exceptions

50 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

5.2.5 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable.
When a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

• The Random register is initialized to the number of TLB entries - 1.

• The Wired register is initialized to zero.

• The Config, Config1, Config2, and Config3 registers are initialized with their boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• The ErrorEPC register is loaded with the restart PC, as described in Table 5.11. Note that this value may or may
not be predictable if the Reset Exception was taken as the result of power being applied to the processor because
PC may not have a valid value in that case. In some implementations, the value loaded into ErrorEPC register
may not be predictable on either a Reset or Soft Reset Exception.

• PC is loaded with 0xBFC0 0000.

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (0xBFC0 0000)

Operation

Random ← TLBEntries - 1
PageMaskMaskX ← 0 # 1KB page support implemented
PageGrainESP ← 0 # 1KB page support implemented
Wired ← 0
HWREna ← 0
EntryHiVPN2X ← 0 # 1KB page support implemented
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 0
StatusERL ← 1
IntCtlVS ← 0
SRSCtlHSS ← HighestImplementedShadowSet
SRSCtlESS ← 0
SRSCtlPSS ← 0
SRSCtlCSS ← 0
SRSMap ← 0
CauseDC ← 0

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 51

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

EBaseExceptionBase ← 0
Config ← ConfigurationState
ConfigK0 ← 2 # Suggested - see Config register description
Config1 ← ConfigurationState
Config2 ← ConfigurationState
Config3 ← ConfigurationState
WatchLo[n]I ← 0 # For all implemented Watch registers
WatchLo[n]R ← 0 # For all implemented Watch registers
WatchLo[n]W ← 0 # For all implemented Watch registers
PerfCnt.Control[n]IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 0xBFC0 0000

5.2.6 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskable.
When a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft
Reset Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
the processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
cache, or other operations may be interrupted, portions of the cache, memory, or other processor state may be incon-
sistent.

The primary difference between the Reset and Soft Reset Exceptions is in actual use. The Reset Exception is typically
used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a
non-responsive (hung) processor. The semantic difference is provided to allow boot software to save critical copro-
cessor 0 or other register state to assist in debugging the potential problem. As such, the processor may reset the same
state when either reset signal is asserted, but the interpretation of any state saved by software may be very different.

In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• The ErrorEPC register is loaded with the restart PC, as described in Table 5.11.

• PC is loaded with 0xBFC0 0000.

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (0xBFC0 0000)

Operation

PageMaskMaskX ← 0 # 1KB page support implemented

 Interrupts and Exceptions

52 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

PageGrainESP ← 0 # 1KB page support implemented
EntryHiVPN2X ← 0 # 1KB page support implemented
ConfigK0 ← 2 # Suggested - see Config register description
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 1
StatusNMI ← 0
StatusERL ← 1
WatchLo[n]I ← 0 # For all implemented Watch registers
WatchLo[n]R ← 0 # For all implemented Watch registers
WatchLo[n]W ← 0 # For all implemented Watch registers
PerfCnt.Control[n]IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 0xBFC0 0000

5.2.7 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Although described as an interrupt, it is more correctly described as an exception because it is not maskable. An NMI
occurs only at instruction boundaries, so does not do any reset or other hardware initialization. The state of the cache,
memory, and other processor state is consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with restart PC, as described in Table 5.11.

• PC is loaded with 0xBFC0 0000.

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (0xBFC0 0000)

Operation

StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 53

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

PC ← 0xBFC0 0000

5.2.8 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception:

• Detection of multiple matching entries in the TLB in a TLB-based MMU.

Cause Register ExcCode Value

MCheck (See Table 8.27 on page 113)

Additional State Saved

Depends on the condition that caused the exception. See the descriptions above.

Entry Vector Used

General exception vector (offset 0x180)

5.2.9 Address Error Exception

An address error exception occurs under the following circumstances:

• An instruction is fetched from an address that is not aligned on a word boundary.

• A load or store word instruction is executed in which the address is not aligned on a word boundary.

• A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.

• A reference is made to a kernel address space from User Mode or Supervisor Mode.

• A reference is made to a supervisor address space from User Mode.

Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the con-
dition is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.

Cause Register ExcCode Value

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store

See Table 8.27 on page 113.

Additional State Saved

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

 Interrupts and Exceptions

54 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Entry Vector Used

General exception vector (offset 0x180)

5.2.10 TLB Refill Exception

A TLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a mapped address
space and the EXL bit is zero in the Status register. Note that this is distinct from the case in which an entry matches
but has the valid bit off, in which case a TLB Invalid exception occurs.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

See Table 8.27 on page 113.

Additional State Saved

Entry Vector Used

• TLB Refill vector (offset 0x000) if StatusEXL = 0 at the time of exception.

• General exception vector (offset 0x180) if StatusEXL = 1 at the time of exception

5.2.11 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the matched
entry has the valid bit off.

Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bit is one
in the Status register is indistinguishable from a TLB Invalid Exception in the sense that both use the general excep-
tion vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two cases is by prob-
ing the TLB for a matching entry (using TLBP).

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

See Table 8.26 on page 110.

EntryLo1 UNPREDICTABLE

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13 of the failing address; the

ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 55

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

5.2.12 TLB Modified Exception

A TLB modified exception occurs on a store reference to a mapped address when the matching TLB entry is valid,
but the entry’s D bit is zero, indicating that the page is not writable.

Cause Register ExcCode Value

Mod (See Table 8.26 on page 110)

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

5.2.13 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or
ECC error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error
was in a cache, the exception vector is to an unmapped, uncached address.

Cause Register ExcCode Value

N/A

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13 of the failing address; the

ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31..13 of the failing address

EntryHi The VPN2 field contains VA31..13 of the failing address; the

ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

 Interrupts and Exceptions

56 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Additional State Saved

Entry Vector Used

Cache error vector (offset 0x100)

Operation

CacheErr ← ErrorState
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
if StatusBEV = 1 then

PC ← 0xBFC0 0200 + 0x100
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 and bit 29 forced to a 1 puts the */
/* vector in kseg1 */
PC ← EBase31..30 || 1 || EBase28..12 || 0x100

else
PC ← 0xA000 0000 + 0x100

endif
endif

5.2.14 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or an
uncacheable reference) and that request is terminated in an error. Note that parity errors detected during bus transac-
tions are reported as cache error exceptions, not bus error exceptions.

Cause Register ExcCode Value

IBE: Error on an instruction reference

DBE: Error on a data reference

See Table 8.27 on page 113.

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

5.2.15 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Register State Value

CacheErr Error state

ErrorEPC Restart PC

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 57

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Cause Register ExcCode Value

Ov (See Table 8.27 on page 113)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

5.2.16 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value

Tr (See Table 8.27 on page 113)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

5.2.17 System Call Exception

A system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value

Sys (See Table 8.26 on page 110)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

5.2.18 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value

Bp (See Table 8.27 on page 113)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

 Interrupts and Exceptions

58 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

5.2.19 Reserved Instruction Exception

A Reserved Instruction Exception occurs if any of the following conditions is true:

• An instruction was executed that specifies an encoding of the opcode field that is flagged with “∗” (reserved),
“β” (higher-order ISA), or an unimplemented “ε” (ASE).

• An instruction was executed that specifies a SPECIAL opcode encoding of the function field that is flagged with
“∗” (reserved), or “β” (higher-order ISA).

• An instruction was executed that specifies a REGIMM opcode encoding of the rt field that is flagged with “∗”
(reserved).

• An instruction was executed that specifies an unimplemented SPECIAL2 opcode encoding of the function field
that is flagged with an unimplemented “θ” (partner available), or an unimplemented “σ” (EJTAG).

• An instruction was executed that specifies a COPz opcode encoding of the rs field that is flagged with “∗”
(reserved), “β” (higher-order ISA), or an unimplemented “ε” (ASE), assuming that access to the coprocessor is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. For the
COP1 opcode, some implementations of previous ISAs reported this case as a Floating Point Exception, setting
the Unimplemented Operation bit in the Cause field of the FCSR register.

• An instruction was executed that specifies an unimplemented COP0 opcode encoding of the function field when
rs is CO that is flagged with “∗” (reserved), or an unimplemented “σ” (EJTAG), assuming that access to copro-
cessor 0 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs
instead.

• An instruction was executed that specifies a COP1 opcode encoding of the function field that is flagged with “∗”
(reserved), “β” (higher-order ISA), or an unimplemented “ε” (ASE), assuming that access to coprocessor 1 is
allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some
implementations of previous ISAs reported this case as a Floating Point Exception, setting the Unimplemented
Operation bit in the Cause field of the FCSR register.

Cause Register ExcCode Value

RI (See Table 8.27 on page 113)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

5.2.20 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

• A COP0 or Cache instruction was executed while the processor was running in a mode other than Debug Mode
or Kernel Mode, and the CU0 bit in the Status register was a zero

• A COP1, COP1X,LWC1, SWC1, LDC1, SDC1 or MOVCI (Special opcode function field encoding) instruction
was executed and the CU1 bit in the Status register was a zero.

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 59

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

• A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in the Status register was a
zero.

NOTE: In Release 2 of the MIPS32 Architecture, the use of COP3 as a user-defined coprocessor has been removed.
The use of COP3 is reserved for the future extension of the architecture.

Cause Register ExcCode Value

CpU (See Table 8.26 on page 110)

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

5.2.21 Floating Point Exception

A floating point exception is initiated by the floating point coprocessor to signal a floating point exception.

Register ExcCode Value

FPE (See Table 8.26 on page 110)

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

5.2.22 Coprocessor 2 Exception

A coprocessor 2 exception is initiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value

C2E (See Table 8.26 on page 110)

Additional State Saved

Defined by the coprocessor

Entry Vector Used

General exception vector (offset 0x180)

Register State Value

CauseCE unit number of the coprocessor being referenced

Register State Value

FCSR indicates the cause of the floating point exception

 Interrupts and Exceptions

60 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

5.2.23 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero. If either bit is a one at the time that a watch
exception would normally be taken, the WP bit in the Cause register is set, and the exception is deferred until both
the EXL and ERL bits in the Status register are zero. Software may use the WP bit in the Cause register to determine
if the EPC register points at the instruction that caused the watch exception, or if the exception actually occurred
while in kernel mode.

If the EXL or ERL bits are one in the Status register and a single instruction generates both a watch exception (which
is deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is taken.

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match while
the processor is in Debug Mode, the exception is inhibited and the WP bit is not changed.

It is implementation dependent whether a data watch exception is triggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions. A watch triggered by a SC instruction does so even if
the store would not complete because the LL bit is zero.

Register ExcCode Value

WATCH (See Table 8.26 on page 110)

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

5.2.24 Interrupt Exception

The interrupt exception occurs when an enabled request for interrupt service is made. See Section 5.1 on page 31 for
more information.

Register ExcCode Value

Int (See Table 8.27 on page 113)

Additional State Saved

Register State Value

CauseWP indicates that the watch exception was deferred until after
both StatusEXL and StatusERL were zero. This bit directly

causes a watch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Register State Value

CauseIP indicates the interrupts that are pending.

5.2 Exceptions

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 61

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Entry Vector Used

General exception vector (offset 0x180) if the IV bit in the Cause register is zero.

Interrupt vector (offset 0x200) if the IV bit in the Cause register is one.

 Interrupts and Exceptions

62 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Chapter 6

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 63

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

GPR Shadow Registers

The capability in this chapter is targeted at removing the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to Kernel Mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set
zero.

The number of GPR shadow sets is implementation dependent and may range from one (the normal GPRs) to an
architectural maximum of 16. The highest number actually implemented is indicated by the SRSCtlHSS field, and all
shadow sets between 0 and SRSCtlHSS, inclusive must be implemented. If this field is zero, only the normal GPRs are
implemented.

6.1 Introduction to Shadow Sets

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to Kernel Mode via an
interrupt or exception. Once a shadow set is bound to a Kernel Mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register provides
the number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the
previous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS to
restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions are true. In this case, steps 2 and 3
are skipped.

• The exception is one that sets StatusERL: NMI or cache error.

• The exception causes entry into EJTAG Debug Mode

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS

 GPR Shadow Registers

64 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
IntCtlVSS ≠ 0, Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of the SRSCtl register if the exception is an interrupt, CauseIV = 1, IntCtlVSS ≠ 0, and
Config3VEIC = 1. These are the conditions for a vectored EIC interrupt.

• The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is
skipped.

• A DERET is executed

• An ERET is executed with StatusERL = 1 or StatusBEV = 1

2. SRSCtlPSS is copied to SRSCtlCSS

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

6.2 Support Instructions

Table 6.1 Instructions Supporting Shadow Sets

Mnemonic Function MIPS64 Only?

RDPGPR Read GPR From Previous Shadow Set No

WRPGPR Write GPR to Shadow Set No

Chapter 7

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 65

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

CP0 Hazards

7.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS32 proces-
sor, manipulation of these resources may produce results that are not detectable by subsequent instructions for some
number of execution cycles. When no hardware interlock exists between one instruction that causes an effect that is
visible to a second instruction, a CP0 hazard exists.

In Release 1 of the MIPS32® Architecture, CP0 hazards were relegated to implementation-dependent cycle-based
solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that this is an insufficient
and error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are back-
ward-compatible with existing MIPS processors.

7.2 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

Implementations using Release 1 of the architecture should refer to their Implementation documentation for the
required instruction “spacing” that is required to eliminate these hazards.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than
one, and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this
reason that MIPS32 Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar
design.

7.2.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 7.1 lists execution hazards.

Table 7.1 Execution Hazards

Producer → Consumer Hazard On

Hazards Related to the TLB

MTC0 → TLBR,
TLBWI,
TLBWR

EntryHi

 CP0 Hazards

66 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

MTC0 → TLBWI,
TLBWR

EntryLo0,
EntryLo1,

Index,
PageMask,
PageGrain

MTCO → TLBWR Wired

MTC0 → TLBP,
Load or Store Instruction

EntryHiASID

MTC0 → Load/store affected by
new state

EntryHiASID,

WatchHi,
WatchLo,

Config

TLBP → MFC0 Index

TLBR → MFC0 EntryHi,
EntryLo0,
EntryLo1,
PageMask

TLBWI,
TLBWR

→ TLBP,
TLBR,
Load/store using new TLB
entry

TLB entry

Hazards Related to Exceptions or Interrupts

MTC0 → Coprocessor instruction
execution depends on the
new value of StatusCU

StatusCU

MTC0 → ERET DEPC,
EPC,

ErrorEPC,
Status

MTC0 → Interrupted Instruction CauseIP,

CauseIV

Compare,
Count,

PerfCnt ControlIE,

PerfCnt Counter,
StatusIE,

StatusIM

EBase
SRSCtl

SRSMap

Table 7.1 Execution Hazards

Producer → Consumer Hazard On

7.2 Types of Hazards

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 67

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

7.2.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 7.2 lists instruction hazards.

EI, DI → Interrupted Instruction StatusIE,

StatusIM

Other Hazards

LL → MFC0 LLAddr

MTC0 → CACHE PageGrain

Table 7.2 Instruction Hazards

Producer → Consumer Hazard On

Hazards Related to the TLB

MTC0 → Instruction fetch seeing the new value EntryHiASID,

WatchHi,
WatchLo
Config

MTC0 → Instruction fetch seeing the new value
(including a change to ERL followed
by an instruction fetch from the useg
segment)

Status

TLBWI,
TLBWR

→ Instruction fetch using new TLB entry TLB entry

Hazards Related to Writing the Instruction Stream or Modifying an Instruction Cache
Entry

Instruction
stream writes

→ Instruction fetch seeing the new
instruction stream

Cache entries

CACHE → Instruction fetch seeing the new
instruction stream

Cache entries

Other Hazards

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS
1

1. This is not precisely a hazard on the instruction fetch. Rather it is a hazard on a modifi-
cation to the previous GPR context field, followed by a previous-context reference to
the GPRs. It is considered an instruction hazard rather than an execution hazard because
some implementation may require that the previous GPR context be established early in
the pipeline, and execution hazards are not meant to cover this case.

Table 7.1 Execution Hazards

Producer → Consumer Hazard On

 CP0 Hazards

68 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

7.3 Hazard Clearing Instructions and Events

Table 7.3 lists the instructions designed to eliminate hazards.

DERET, ERET, and SSNOP are available in Release 1 of the Architecture; EHB, JALR.HB, JR.HB, and SYNCI were
added in Release 2 of the Architecture. In both Release 1 and Release 2 of the Architecture, DERET and ERET clear
both execution and instruction hazards and they are the only timing-independent instructions which will do this in
both releases of the architecture.

Even though DERET and ERET clear hazards between the execution of the instruction and the target instruction
stream, an execution hazard may still be created between a write of the DEPC, EPC, ErrorEPC, or Status registers
and the DERET or ERET instruction.

In addition, an exception or interrupt also clears both execution and instruction hazards between the instruction that
created the hazard and the first instruction of the exception or interrupt handler. Said another way, no hazards remain
visible by the first instruction of an exception or interrupt handler.

7.3.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

Table 7.3 Hazard Clearing Instructions

Mnemonic Function

DERET Clear both execution and instruction hazards

EHB Clear execution hazard

ERET Clear both execution and instruction hazards

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SSNOP Superscalar No Operation

SYNCI1

1. SYNCI synchronizes caches after an instruction stream write, and
before execution of that instruction stream. As such, it is not precisely a
coprocessor 0 hazard, but is included here for completeness.

Synchronize caches after instruction stream write

Chapter 8

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 69

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 Registers

The Coprocessor 0 (CP0) registers provide the interface between the ISA and the PRA. Each register is discussed
below, with the registers presented in numerical order, first by register number, then by select field number.

8.1 Coprocessor 0 Register Summary

Table 8.1 lists the CP0 registers in numerical order. The individual registers are described later in this document. If
the compliance level is qualified (e.g., “Required (TLB MMU)”), it applies only if the qualifying condition is true.
The Sel column indicates the value to be used in the field of the same name in the MFC0 and MTC0 instructions.

Table 8.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference Compliance Level

0 0 Index Index into the TLB array Section 8.4 on page
76

Required (TLB
MMU); Optional

(Others)

0 1 MVPControl Per-processor register containing global
MIPS® MT configuration data

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

0 2 MVPConf0 Per-processor multi-VPE dynamic con-
figuration information

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

0 3 MVPConf1 Per-processor multi-VPE dynamic con-
figuration information

MIPS®MT ASE
Specification

Optional

1 0 Random Randomly generated index into the TLB
array

Section 8.5 on page
77

Required (TLB
MMU); Optional

(Others)

1 1 VPEControl Per-VPE register containing relatively
volatile thread configuration data

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

1 2 VPEConf0 Per-VPE multi-thread configuration
information

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

1 3 VPEConf1 Per-VPE multi-thread configuration
information

MIPS®MT ASE
Specification

Optional

1 4 YQMask Per-VPE register defining which YIELD
qualifier bits may be used without gener-
ating an exception

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

 Coprocessor 0 Registers

70 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1 5 VPESchedule Per-VPE register to manage scheduling
of a VPE within a processor

MIPS®MT ASE
Specification

Optional

1 6 VPEScheFBack Per-VPE register to provide scheduling
feedback to software

MIPS®MT ASE
Specification

Optional

1 7 VPEOpt Per-VPE register to provide control over
optional features, such as cache partition-
ing control

MIPS®MT ASE
Specification

Optional

2 0 EntryLo0 Low-order portion of the TLB entry for
even-numbered virtual pages

Section 8.6 on page
78

Required (TLB
MMU); Optional

(Others)

2 1 TCStatus Per-TC status information, including cop-
ies of thread-specific bits of Status and
EntryHi registers.

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

2 2 TCBind Per-TC information about TC ID and
VPE binding

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

2 3 TCRestart Per-TC value of restart instruction
address for the associated thread of exe-
cution

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

2 4 TCHalt Per-TC register controlling Halt state of
TC

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

2 5 TCContext Per-TC read/write storage for operating
system use

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

2 6 TCSchedule Per-TC register to manage scheduling of
a TC

MIPS®MT ASE
Specification

Optional

2 7 TCScheFBack Per-TC register to provide scheduling
feedback to software

MIPS®MT ASE
Specification

Optional

3 0 EntryLo1 Low-order portion of the TLB entry for
odd-numbered virtual pages

Section 8.6 on page
78

Required (TLB
MMU); Optional

(Others)

4 0 Context Pointer to page table entry in memory Section 8.7 on page
82

Required (TLB
MMU); Optional

(Others)

4 1 ContextConfig Context and XContext register configura-
tion

SmartMIPS ASE
Specification

Required (Smart-
MIPS ASE Only)

4 2 UserLocal User information that can be written by
privileged software and read via
RDHWR register 29. If the processor
implements the MIPS® MT ASE, this is
a per-TC register.

Section 8.8 on page
83

Recommended
(Release 2)

Table 8.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference Compliance Level

8.1 Coprocessor 0 Register Summary

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 71

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

5 0 PageMask Control for variable page size in TLB
entries

Section 8.9 on page
84

Required (TLB
MMU); Optional

(Others)

5 1 PageGrain Control for small page support Section 8.10 on
page 86 and Smart-
MIPS ASE Specifi-
cation

Required (Smart-
MIPS ASE);

Optional (Release 2)

6 0 Wired Controls the number of fixed (“wired”)
TLB entries

Section 8.11 on
page 88

Required (TLB
MMU); Optional

(Others)

6 1 SRSConf0 Per-VPE register indicating and option-
ally controlling shadow register set con-
figuration

MIPS®MT ASE
Specification

Required (MIPS MT
ASE); Optional (Oth-

ers)

6 2 SRSConf1 Per-VPE register indicating and option-
ally controlling shadow register set con-
figuration

MIPS®MT ASE
Specification

Optional

6 3 SRSConf2 Per-VPE register indicating and option-
ally controlling shadow register set con-
figuration

MIPS®MT ASE
Specification

Optional

6 4 SRSConf3 Per-VPE register indicating and option-
ally controlling shadow register set con-
figuration

MIPS®MT ASE
Specification

Optional

6 5 SRSConf4 Per-VPE register indicating and option-
ally controlling shadow register set con-
figuration

MIPS®MT ASE
Specification

Optional

7 0 HWREna Enables access via the RDHWR instruc-
tion to selected hardware registers

Section 8.12 on
page 90

Required (Release 2)

7 1-7 Reserved for future extensions Reserved

8 0 BadVAddr Reports the address for the most recent
address-related exception

Section 8.13 on
page 92

Required

9 0 Count Processor cycle count Section 8.14 on
page 93

Required

9 6-7 Available for implementation dependent
user

Section 8.15 on
page 93

Implementation
Dependent

10 0 EntryHi High-order portion of the TLB entry Section 8.16 on
page 94

Required (TLB
MMU); Optional

(Others)

11 0 Compare Timer interrupt control Section 8.17 on
page 96

Required

11 6-7 Available for implementation dependent
user

Section 8.18 on
page 96

Implementation
Dependent

Table 8.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference Compliance Level

 Coprocessor 0 Registers

72 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

12 0 Status Processor status and control Section 8.19 on
page 97

Required

12 1 IntCtl Interrupt system status and control Section 8.20 on
page 104

Required (Release 2)

12 2 SRSCtl Shadow register set status and control Section 8.21 on
page 106

Required (Release 2)

12 3 SRSMap Shadow set IPL mapping Section 8.22 on
page 109

Required (Release 2
and shadow sets
implemented)

13 0 Cause Cause of last general exception Section 8.23 on
page 110

Required

14 0 EPC Program counter at last exception Section 8.24 on
page 115

Required

15 0 PRId Processor identification and revision Section 8.25 on
page 117

Required

15 1 EBase Exception vector base register Section 8.26 on
page 119

Required (Release 2)

16 0 Config Configuration register Section 8.27 on
page 121

Required

16 1 Config1 Configuration register 1 Section 8.28 on
page 123

Required

16 2 Config2 Configuration register 2 Section 8.29 on
page 127

Optional

16 3 Config3 Configuration register 3 Section 8.30 on
page 130

Optional

16 6-7 Available for implementation dependent
user

Section 8.31 on
page 133

Implementation
Dependent

17 0 LLAddr Load linked address Section 8.32 on
page 134

Optional

18 0-n WatchLo Watchpoint address Section 8.33 on
page 135

Optional

19 0-n WatchHi Watchpoint control Section 8.34 on
page 137

Optional

20 0 XContext in 64-bit implementations Reserved

21 all Reserved for future extensions Reserved

22 all Available for implementation dependent
use

Section 8.35 on
page 139

Implementation
Dependent

23 0 Debug EJTAG Debug register EJTAG Specification Optional

Table 8.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference Compliance Level

8.1 Coprocessor 0 Register Summary

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 73

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

23 1 TraceControl PDtrace control register PDtrace Specifica-
tion

Optional

23 2 TraceControl2 PDtrace control register PDtrace Specifica-
tion

Optional

23 3 UserTraceData1 PDtrace control register PDtrace Specifica-
tion

Optional

23 4 TraceIBPC PDtrace control register PDtrace Specifica-
tion

Optional

23 5 TraceDBPC PDtrace control register PDtrace Specifica-
tion

Optional

23 6 Debug2 EJTAG Debug2 register EJTAG Specification Optional

24 0 DEPC Program counter at last EJTAG debug
exception

EJTAG Specification Optional

24 2 TraceContol3 PDtrace control register PDtrace Specifica-
tion

Optional

24 3 UserTraceData2 PDtrace control register PDtrace Specifica-
tion

Optional

25 0-n PerfCnt Performance counter interface Section 8.38 on
page 142

Recommended

26 0 ErrCtl Parity/ECC error control and status Section 8.39 on
page 146

Optional

27 0-3 CacheErr Cache parity error control and status Section 8.40 on
page 147

Optional

28 even
selects

TagLo Low-order portion of cache tag interface Section 8.41 on
page 148

 Required (Cache)

28 odd
selects

DataLo Low-order portion of cache data interface Section 8.42 on
page 149

Optional

29 even
selects

TagHi High-order portion of cache tag interface Section 8.43 on
page 150

Required (Cache)

29 odd
selects

DataHi High-order portion of cache data inter-
face

Section 8.44 on
page 151

Optional

30 0 ErrorEPC Program counter at last error Section 8.45 on
page 152

Required

31 0 DESAVE EJTAG debug exception save register EJTAG Specification Optional

1. Any select (Sel) value not explicitly noted as available for implementation-dependent use is reserved for future use by the Architec-
ture.

Table 8.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1

Register
Name Function Reference Compliance Level

 Coprocessor 0 Registers

74 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of the field. For the read/write properties of the field, the following notation is used:

8.3 Writing CPU Registers

With certain restrictions, software may assume that it can validly write the value read from a coprocessor 0 register
back to that register without having unintended side effects. This rule means that software can read a register, modify
one field, and write the value back to the register without having to consider the impact of writes to other fields. Pro-
cessor designers should take this into consideration when using coprocessor 0 register fields that are reserved for
implementations and make sure that the use of these bits is consistent with software assumptions.

Table 8.2 Read/Write Bit Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field are vis-
ible by hardware read.
If the Reset State of this field is “Undefined”, either software or hardware must initialize the
value before the first read will return a predictable value. This should not be confused with the
formal definition of UNDEFINED behavior.

R A field which is either static or is updated only
by hardware.
If the Reset State of this field is either “0”,
“Preset”, or “Externally Set”, hardware initial-
izes this field to zero or to the appropriate
state, respectively, on powerup. The term “Pre-
set” is used to suggest that the processor estab-
lishes the appropriate state, whereas the term
“Externally Set” is used to suggest that the
state is established via an external source (e.g.,
personality pins or initialization bit stream).
These terms are suggestions only, and are not
intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software
is ignored by hardware. Software may write
any value to this field without affecting hard-
ware behavior. Software reads of this field
return the last value updated by hardware.
If the Reset State of this field is “Undefined”,
software reads of this field result in an
UNPREDICTABLE value except after a
hardware update done under the conditions
specified in the description of the field.

0 A field which hardware does not update, and
for which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero val-
ues to this field may result in UNDEFINED
behavior of the hardware. Software reads of
this field return zero as long as all previous
software writes are zero.
If the Reset State of this field is “Undefined”,
software must write this field with zero before
it is guaranteed to read as zero.

8.3 Writing CPU Registers

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 75

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

The most significant exception to this rule is a situation in which the processor modifies the register between the soft-
ware read and write, such as might occur if an exception or interrupt occurs between the read and write. Software
must guarantee that such an event does not occur.

76 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.4 Index Register (CP0 Register 0, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Index register is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR,
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of
TLB entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). For
example, six bits are required for a TLB with 48 entries).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

Figure 8-1 shows the format of the Index register; Table 8.3 describes the Index register fields.

Figure 8-1 Index Register Format
31 n n-1 0

P 0 Index

Table 8.3 Index Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

P 31 Probe Failure. Hardware writes this bit during execu-
tion of the TLBP instruction to indicate whether a TLB
match occurred:

R Undefined Required

0 30..n Must be written as zero; returns zero on read. 0 0 Reserved

Index n-1..0 TLB index. Software writes this field to provide the
index to the TLB entry referenced by the TLBR and
TLBWI instructions.
Hardware writes this field with the index of the match-
ing TLB entry during execution of the TLBP instruc-
tion. If the TLBP fails to find a match, the contents of
this field are UNPREDICTABLE.

R/W Undefined Required

Encoding Meaning

0 A match occurred, and the Index field
contains the index of the matching
entry

1 No match occurred and the Index field
is UNPREDICTABLE

8.5 Random Register (CP0 Register 1, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 77

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.5 Random Register (CP0 Register 1, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Random register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register is the first entry available to be written by a
TLB Write Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for
the Random register is implementation-dependent.

The processor initializes the Random register to the upper bound on a Reset Exception, and when the Wired register
is written.

Figure 8-2 shows the format of the Random register; Table 8.4 describes the Random register fields.

Figure 8-2 Random Register Format
31 n n-1 0

0 Random

Table 8.4 Random Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Random n-1..0 TLB Random Index R TLB Entries - 1 Required

78 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

Compliance Level: EntryLo0 is Required for a TLB-based MMU; Optional otherwise.

Compliance Level: EntryLo1 is Required for a TLB-based MMU; Optional otherwise.

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions. EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd pages.

Software may determine the value of PABITS by writing all ones to the EntryLo0 or EntryLo1 registers and reading
the value back. Bits read as “1” from the PFN field allow software to determine the boundary between the PFNand
Fill fields to calculate the value of PABITS.

The contents of the EntryLo0 and EntryLo1 registers are not defined after an address error exception and some fields
may be modified by hardware during the address error exception sequence. Software writes of the EntryHi register
(via MTC0) do not cause the implicit update of address-related fields in the BadVAddr or Context registers.

For Release 1 of the Architecture, Figure 8-3 shows the format of the EntryLo0 and EntryLo1 registers; Table 8.5
describes the EntryLo0 and EntryLo1 register fields. For Release 2 of the Architecture, Figure 8-4 shows the format
of the EntryLo0 and EntryLo1 registers; Table 8.6 describes the EntryLo0 and EntryLo1 register fields.

Figure 8-3 EntryLo0, EntryLo1 Register Format in Release 1 of the Architecture
31 30 29 6 5 3 2 1 0

Fill PFN C D V G

Table 8.5 EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

Fill 31..30 These bits are ignored on write and return zero on read.
The boundaries of this field change as a function of the
value of PABITS. See Table 8.7 for more information.

R 0 Required

PFN 29..6 Page Frame Number. Corresponds to bits PABITS-1..12
of the physical address, where PABITS is the width of the
physical address in bits. The boundaries of this field
change as a function of the value of PABITS. See Table
8.7 for more information.

R/W Undefined Required

C 5..3 Cacheability and Coherency Attribute of the page. See
Table 8.8 below.

R/W Undefined Required

8.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 79

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

D 2 “Dirty” bit, indicating that the page is writable. If this bit
is a one, stores to the page are permitted. If this bit is a
zero, stores to the page cause a TLB Modified exception.
Kernel software may use this bit to implement paging
algorithms that require knowing which pages have been
written. If this bit is always zero when a page is initially
mapped, the TLB Modified exception that results on any
store to the page can be used to update kernel data struc-
tures that indicate that the page was actually written.

R/W Undefined Required

V 1 Valid bit, indicating that the TLB entry, and thus the vir-
tual page mapping are valid. If this bit is a one, accesses
to the page are permitted. If this bit is a zero, accesses to
the page cause a TLB Invalid exception.

R/W Undefined Required

G 0 Global bit. On a TLB write, the logical AND of the G
bits from both EntryLo0 and EntryLo1 becomes the G
bit in the TLB entry. If the TLB entry G bit is a one,
ASID comparisons are ignored during TLB matches. On
a read from a TLB entry, the G bits of both EntryLo0
and EntryLo1 reflect the state of the TLB G bit.

R/W Undefined Required (TLB
MMU)

Figure 8-4 EntryLo0, EntryLo1 Register Format in Release 2 of the Architecture
31 30 29 6 5 3 2 1 0

Fill PFN C D V G

Table 8.6 EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

Fill 31..30 These bits are ignored on write and return zero on read.
The boundaries of this field change as a function of the
value of PABITS. See Table 8.7 for more information.

R 0 Required

Table 8.5 EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

80 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 8.7 shows the movement of the Fill and PFN fields as a function of 1KB page support enabled, and the value of
PABITS. Note that in implementations of Release 1 of the Architecture, there is no support for 1KB pages, so only the
first row of the table applies to Release 1.

Programming Note:

In implementations of Release 2 of the Architecture, the PFN field of both the EntryLo0 and EntryLo1 registers must
be written with zero and the TLB must be flushed before each instance in which the value of the PageGrain register
is changed. This operation must be carried out while running in an unmapped address space. The operation of the pro-

PFN 29..6 Page Frame Number. This field contains the physical
page number corresponding to the virtual page.
If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the PFN field

corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relative to the Release 1 def-
inition to make room for PA11..10).

If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the PFN field cor-

responds to bits 35..12 of the physical address.
The boundaries of this field change as a function of the
value of PABITS. See Table 8.7 for more information.

R/W Undefined Required

C 5..3 The definition of this field is unchanged from Release 1.
See Table 8.5 above and Table 8.8 below.

R/W Undefined Required

D 2 The definition of this field is unchanged from Release 1.
See Table 8.5 above.

R/W Undefined Required

V 1 The definition of this field is unchanged from Release 1.
See Table 8.5 above.

R/W Undefined Required

G 0 The definition of this field is unchanged from Release 1.
See Table 8.5 above.

R/W Undefined Required (TLB
MMU)

Table 8.7 EntryLo Field Widths as a Function of PABITS

1KB Page
Support

Enabled? PABITS Value

Corresponding EntryLo Field Bit Ranges
Release 2
Required?Fill Field PFN Field

No 36 ≥ PABITS > 12 31..(30-(36-PABITS))
Example:

31..30 if PABITS = 36
31..7 if PABITS = 13

(29-(36-PABITS))..6
Example:

29..6 if PABITS = 36
6..6 if PABITS = 13

EntryLo29..6 = PA35..12

No

Yes 34 ≥ PABITS > 10 31..(30-(34-PABITS))
Example:

31..30 if PABITS = 34
31..7 if PABITS = 11

(29-(34-PABITS))..6
Example:

29..6 if PABITS = 34
6..6 if PABITS = 11

EntryLo29..6 = PA33..10

Yes

Table 8.6 EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

8.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 81

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

cessor is UNDEFINED if this sequence is not done.

Table 8.8 lists the encoding of the C field of the EntryLo0 and EntryLo1 registers and the K0 field of the Config reg-
ister. An implementation may choose to implement a subset of the cache coherency attributes shown, but must imple-
ment at least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In
other cases, the operation of the processor is UNDEFINED if software specifies an unimplemented encoding.

Table 8.8 lists the required and optional encodings for the cacheability and coherency attributes.

Table 8.8 Cacheability and Coherency Attributes

C(5:3) Value
Cacheability and Coherency Attributes

With Historical Usage Compliance

0 Available for implementation dependent use Optional

1 Available for implementation dependent use Optional

2 Uncached Required

3 Cacheable Required

4 Available for implementation dependent use Optional

5 Available for implementation dependent use Optional

6 Available for implementation dependent use Optional

7 Available for implementation dependent use Optional

82 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.7 Context Register (CP0 Register 4, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of
the information provided in the BadVAddr register, but is organized in such a way that the operating system can
directly reference a 16-byte structure in memory that describes the mapping.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the BadVPN2 field of the Context register. The PTEBase field is written and used by the operating system.

The BadVPN2 field of the Context register is not defined after an address error exception and this field may be mod-
ified by hardware during the address error exception sequence.

Figure 8-5 shows the format of the Context Register; Table 8.9 describes the Context register fields.

Figure 8-5 Context Register Format
31 23 22 4 3 0

PTEBase BadVPN2 0

Table 8.9 Context Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

PTEBase 31..23 This field is for use by the operating system and is
normally written with a value that allows the oper-
ating system to use the Context Register as a
pointer into the current PTE array in memory.

R/W Undefined Required

BadVPN2 22..4 This field is written by hardware on a TLB excep-
tion. It contains bits VA31..13 of the virtual address

that caused the exception.

R Undefined Required

0 3..0 Must be written as zero; returns zero on read. 0 0 Reserved

8.8 UserLocal Register (CP0 Register 4, Select 2)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 83

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.8 UserLocal Register (CP0 Register 4, Select 2)

Compliance Level: Recommended.

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

If the MIPS® MT ASE is implemented, the UserLocal register is instantiated per TC.

Figure 8-6 shows the format of the UserLocal register; Table 8.10 describes the UserLocal register fields.

Programming Notes

Privileged software may write this register with arbitrary information and make it accessable to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to
enable unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer
to a thread-specific storage block that is obtained via the RDHWR register.

Figure 8-6 UserLocal Register Format
31 0

UserInformation

Table 8.10 UserLocal Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

UserInfor-
mation

31..0 This field contains software information that is not inter-
preted by the hardware.

R/W Undefined Required

84 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.9 PageMask Register (CP0 Register 5, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The PageMask register is a read/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown in Table 8.12. Figure 8-7 shows the format of the
PageMask register; Table 8.11 describes the PageMask register fields.

Figure 8-7 PageMask Register Format
31 29 28 13 12 11 0

0 Mask MaskX 0

Table 8.11 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Mask 28..13 The Mask field is a bit mask in which a “1” bit
indicates that the corresponding bit of the vir-
tual address should not participate in the TLB
match.

R/W Undefined Required

MaskX 12..11 In Release 2 of the Architecture, the MaskX
field is an extension to the Mask field to sup-
port 1KB pages with definition and action
analogous to that of the Mask field, defined
above.
If 1KB pages are enabled (Config3SP = 1 and

PageGrainESP = 1), these bits are writable and

readable, and their values are copied to and
from the TLB entry on a TLB write or read,
respectively.
If 1KB pages are not enabled (Config3SP = 0

or PageGrainESP = 0), these bits are not writ-

able, return zero on read, and the effect on the
TLB entry on a write is as if they were written
with the value 0b11.
In Release 1 of the Architecture, these bits
must be written as zero, return zero on read,
and have no effect on the virtual address trans-
lation.

R/W 0
(See Description)

Required (Release
2)

0 31..29,
10..0

Ignored on write; returns zero on read. R 0 Required

8.9 PageMask Register (CP0 Register 5, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 85

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

It is implementation dependent how many of the encodings described in Table 8.12 are implemented. All processors
must implement the 4KB page size. If a particular page size encoding is not implemented by a processor, a read of the
PageMask register must return zeros in all bits that correspond to encodings that are not implemented, thereby
potentially returning a value different than that written by software.

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading
the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor is UNDEFINED if software loads the Mask field with a value other than one of those listed in Table 8.12, even
if the hardware returns a different value on read. Hardware may depend on this requirement in implementing hard-
ware structures

Programming Note:

In implementations of Release 2 of the Architecture, the MaskX field of the PageMask register must be written with
0b11 and the TLB must be flushed before each instance in which the value of the PageGrain register is changed.
This operation must be carried out while running in an unmapped address space. The operation of the processor is
UNDEFINED if this sequence is not done.

Table 8.12 Values for the Mask and MaskX1 Fields of the PageMask Register

Page Size

Bit

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

12
1

1. PageMask12..11 = PageMaskMaskX exists only on implementations of Release 2 of the architecture and are treated as if they had

the value 0b11 if 1K pages are not enabled (Config3SP = 0 or PageGrainESP = 0).

111

1 KByte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

64 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

256 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 MByte 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

4 MByte 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

64 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

256 MByte 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

86 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.10 PageGrain Register (CP0 Register 5, Select 1)

Compliance Level: Required for implementations of Release 2 of the Architecture that include TLB-based MMUs
and support 1KB pages; Optional otherwise.

The PageGrain register is a read/write register used for enabling 1KB page support. The PageGrain register is
present in both the SmartMIPS™ ASE, and in Release 2 of the Architecture, although there are no bits in common
between the two uses of this register. As such, the description below only describes the fields relevant to Release 2 of
the Architecture. In implementations of both Release 2 of the Architecture and the SmartMIPS™ ASE, the ASE def-
initions take precedence and none of the Release 2 fields described below are present. Figure 8-8 shows the format of
the PageGrain register; Table 8.13 describes the PageGrain register fields.

Figure 8-8 PageGrain Register Format
31 30 29 28 27 13 12 8 7 0

ASE ELPA ESP 0 ASE 0

Table 8.13 PageGrain Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

ASE 31..30,
12..8

These fields are control features of the SmartMIPS™
ASE and are not used in implementations of Release 2 of
the Architecture unless such an implementation also
implements the SmartMIPS™ ASE.

0 0 Required

ELPA 29 Used to enable support for large physical addresses in
MIPS64 processors; not used by MIPS32 processors.
This bit is ignored on write and returns zero on read.

R 0 Required

8.10 PageGrain Register (CP0 Register 5, Select 1)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 87

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Programming Note:

In implementations of Release 2 of the Architecture, the following fields must be written with the specified values,
and the TLB must be flushed before each instance in which the value of the PageGrain register is changed. This
operation must be carried out while running in an unmapped address space. The operation of the processor is UNDE-
FINED if this sequence is not done.

Note also that if PageGrain is changed, a hazard may be created between the instruction that writes PageGrain and
a subsequent CACHE instruction. This hazard must be cleared using the EHB instruction.

ESP 28 Enables support for 1KB pages.

If this bit is a 1, the following changes occur to coproces-
sor 0 registers:
• The PFN field of the EntryLo0 and EntryLo1 regis-

ters holds the physical address down to bit 10 (the
field is shifted left by 2 bits from the Release 1 defini-
tion)

• The MaskX field of the PageMask register is writ-
able and is concatenated to the right of the Mask field
to form the “don’t care” mask for the TLB entry.

• The VPN2X field of the EntryHi register is writable
and bits 12..11 of the virtual address.

• The virtual address translation algorithm is modified
to reflect the smaller page size.

If Config3SP = 0, 1KB pages are not implemented, and

this bit is ignored on write and returns zero on read.

R/W 0 Required

0 27..13, 7..0 Must be written as zero; returns zero on read. 0 0 Reserved

Field Required Value

EntryLo0PFN, EntryLo1PFN 0

EntryLo0PFNX, EntryLo1PFNX 0

PageMaskMaskX 0b11

EntryHiVPN2X 0

Table 8.13 PageGrain Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 1KB page support is not enabled

1 1KB page support is enabled

88 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.11 Wired Register (CP0 Register 6, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 8-9.

Figure 8-9 Wired And Random Entries In The TLB

The width of the Wired field is calculated in the same manner as that described for the Index register. Wired entries
are fixed, non-replaceable entries which are not overwritten by a TLBWR instruction.Wired entries can be overwrit-
ten by a TLBWI instruction.

The Wired register is set to zero by a Reset Exception. Writing the Wired register causes the Random register to
reset to its upper bound.

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Wired register.

Figure 8-9 shows the format of the Wired register; Table 8.14 describes the Wired register fields.

Figure 8-10 Wired Register Format
31 n n-1 0

0 Wired

R
an

do
m

W
ire

d

Entry TLBSize-1

Entry 0

Entry 1010Wired Register

8.11 Wired Register (CP0 Register 6, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 89

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 8.14 Wired Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Wired n-1..0 TLB wired boundary R/W 0 Required

90 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.12 HWREna Register (CP0 Register 7, Select 0)

Compliance Level: Required (Release 2).

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction when that instruction is executed in a mode in which coprocessor 0 is not enabled.

Figure 8-11 shows the format of the HWREna Register; Table 8.15 describes the HWREna register fields.

Figure 8-11 HWREna Register Format
31 30 29 4 3 0

Impl Mask

Table 8.15 HWREna Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

31..30 Impl These bits enable access to the implementa-
tion-dependent hardware registers 31 and 30.

If a register is not implemented, the corresponding
bit returns a zero and is ignored on write.

If a register is implemented, access to that register
is enabled if the corresponding bit in this field is a 1
and disabled if the corresponding bit is a 0.

R/W 0 Optional - Reserved
for Implementations

Mask 29..0 Each bit in this field enables access by the RDHWR
instruction to a particular hardware register (which
may not be an actual register).

If RDHWR register ‘n’ is not implemented, bit ‘n’
of this field returns a zero and is ignored on a write.

If RDHWR register ‘n’ is implemented, access to
the register is enabled if bit ‘n’ in this field is a 1
and disabled if bit ‘n’ of this field is a 0.
See the RDHWR instruction for a list of valid hard-
ware registers.

Table 8.16 lists the RDHWR registers, and register
number ‘n’ corresponds to bit ‘n’ in this field.

R/W 0 Required

8.12 HWREna Register (CP0 Register 7, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 91

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide
direct access to the Count register, access to that register may be individually disabled and the return value can be
virtualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If a bit reads back as a one, the processor implements that hardware register.

Table 8.16 RDHWR Register Numbers

Register
Number Mnemonic Description Compliance

0
CPUNum Number of the CPU on which the program is currently running. This register

provides read access to the coprocessor 0 EBaseCPUNum field.
Required

1

SYNCI_Step Address step size to be used with the SYNCI instruction. See that instruc-
tion’s description for the use of this value. In the typical implementation, this
value should be zero if there are no caches in the system which must be syn-
chronize (either because there are no caches, or because the instruction cache
tracks writes to the data cache). In other cases, the return value should be the
smallest line size of the caches that must be synchronize.

Required

2
CC High-resolution cycle counter. This register provides read access to the

coprocessor 0 Count Register.
Required

3

CCRes Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:

Required

4-28
These registers numbers are reserved for future architecture use. Access
results in a Reserved Instruction Exception.

Reserved

29

ULR User Local Register. This register provides read access to the coprocessor 0
UserLocal register, if it is implemented. In some operating environments,
the UserLocal register is a pointer to a thread-specific storage block.

Required if the
UserLocal
register is

implemented

30-31
These register numbers are reserved for implementation-dependent use. If
they are not implemented, access results in a Reserved Instruction Exception.

Optional

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle

etc.

92 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.13 BadVAddr Register (CP0 Register 8, Select 0)

Compliance Level: Required.

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

• Address error (AdEL or AdES)

• TLB Refill

• TLB Invalid (TLBL, TLBS)

• TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, or for Watch exceptions, since
none is an addressing error.

Figure 8-12 shows the format of the BadVAddr register; Table 8.17 describes the BadVAddr register fields.

Figure 8-12 BadVAddr Register Format
31 0

BadVAddr

Table 8.17 BadVAddr Register Field Descriptions

Fields

Description
Read/W

rite Reset State ComplianceName Bits

BadVAddr 31..0 Bad virtual address R Undefined Required

8.14 Count Register (CP0 Register 9, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 93

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.14 Count Register (CP0 Register 9, Select 0)

Compliance Level: Required.

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The rate at which the counter increments is implementation
dependent, and is a function of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

The Count register can also be read via RDHWR register 2.

Figure 8-13 shows the format of the Count register; Table 8.18 describes the Count register fields.

8.15 Reserved for Implementations (CP0 Register 9, Selects 6 and 7)

Compliance Level: Implementation Dependent.

CP0 register 9, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architecture.

Figure 8-13 Count Register Format
31 0

Count

Table 8.18 Count Register Field Descriptions

Fields

Description
Read/W

rite Reset State ComplianceName Bits

Count 31..0 Interval counter R/W Undefined Required

94 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.16 EntryHi Register (CP0 Register 10, Select 0)

Compliance Level: Required for TLB-based MMU; Optional otherwise.

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31..13 of the virtual address to be written
into the VPN2 field of the EntryHi register. An implementation of Release 2 of the Architecture which supports 1KB
pages also writes VA12..11 into the VPN2X field of the EntryHi register. A TLBR instruction writes the EntryHi regis-
ter with the corresponding fields from the selected TLB entry. The ASID field is written by software with the current
address space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

The VPNX2 and VPN2 fields of the EntryHi register are not defined after an address error exception and these fields
may be modified by hardware during the address error exception sequence.Software writes of the EntryHi register
(via MTC0) do not cause the implicit write of address-related fields in the BadVAddr or Context registers.

Figure 8-14 shows the format of the EntryHi register; Table 8.19 describes the EntryHi register fields.

Figure 8-14 EntryHi Register Format
31 13 12 11 10 8 7 0

VPN2 VPN2X 0 ASID

Table 8.19 EntryHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

VPN2 31..13 VA31..13 of the virtual address (virtual page number / 2).

This field is written by hardware on a TLB exception or
on a TLB read, and is written by software before a TLB
write.

R/W Undefined Required

VPN2X 12..11 In Release 2 of the Architecture, the VPN2X field is an
extension to the VPN2 field to support 1KB pages.
These bits are not writable by either hardware or soft-
ware unless Config3SP = 1 and PageGrainESP = 1. If

enabled for write, this field contains VA12..11 of the vir-

tual address and is written by hardware on a TLB excep-
tion or on a TLB read, and is by software before a TLB
write.
If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.

R/W 0 Required
(Release 2 and
1KB Page Sup-

port)

0 10..8 Must be written as zero; returns zero on read. 0 0 Reserved

8.16 EntryHi Register (CP0 Register 10, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 95

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Programming Note:

In implementations of Release 2 of the Architecture, the VPN2X field of the EntryHi register must be written with
zero and the TLB must be flushed before each instance in which the value of the PageGrain register is changed. This
operation must be carried out while running in an unmapped address space. The operation of the processor is UNDE-
FINED if this sequence is not done.

ASID 7..0 Address space identifier. This field is written by hard-
ware on a TLB read and by software to establish the cur-
rent ASID value for TLB write and against which TLB
references match each entry’s TLB ASID field.

R/W Undefined Required (TLB
MMU)

Table 8.19 EntryHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

96 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.17 Compare Register (CP0 Register 11, Select 0)

Compliance Level: Required.

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The Compare register maintains a stable value and does not change on its own.

When the value of the Count register equals the value of the Compare register, an interrupt request is made. In
Release 1 of the architecture, this request is combined in an implementation-dependent way with hardware interrupt 5
to set interrupt bit IP(7) in the Cause register. In Release 2 of the Architecture, the presence of the interrupt is visible
to software via the CauseTI bit and is combined in an implementation-dependent way with a hardware or software
interrupt. For Vectored Interrupt Mode, the interrupt is at the level specified by the IntCtlIPTI field.

For diagnostic purposes, the Compare register is a read/write register. In normal use however, the Compare register
is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt. Figure 8-15 shows
the format of the Compare register; Table 8.20 describes the Compare register fields.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
Compare register is written. See 5.1.2.1 “Software Hazards and the Interrupt System” on page 42.

8.18 Reserved for Implementations (CP0 Register 11, Selects 6 and 7)

Compliance Level: Implementation Dependent.

CP0 register 11, Selects 6 and 7 are reserved for implementation dependent use and are not defined by the architec-
ture.

Figure 8-15 Compare Register Format
31 0

Compare

Table 8.20 Compare Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Compare 31..0 Interval count compare value R/W Undefined Required

8.19 Status Register (CP Register 12, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 97

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.19 Status Register (CP Register 12, Select 0)

Compliance Level: Required.

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to “MIPS32
Operating Modes” on page 17 for a discussion of operating modes, and “Interrupts” on page 31 for a discussion of
interrupt modes.

Figure 8-16 shows the format of the Status register; Table 8.21 describes the Status register fields.

Figure 8-16 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX PX BEV TS SR NMI 0 Impl IM7..IM2 IM1..IM0 KX SX UX UM R0 ERL EXL IE

IPL KSU

Table 8.21 Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

CU (CU3..
CU0)

31..28 Controls access to coprocessors 3, 2, 1, and 0, respec-
tively:

Coprocessor 0 is always usable when the processor is
running in Kernel Mode or Debug Mode, independent of
the state of the CU0 bit.

In Release 2 of the Architecture, and for 64-bit imple-
mentations of Release 1 of the Architecture, execution of
all floating point instructions, including those encoded
with the COP1X opcode, is controlled by the CU1
enable. CU3 is no longer used and is reserved for future
use by the Architecture.
If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

R/W Undefined Required for all
implemented
coprocessors

RP 27 Enables reduced power mode on some implementations.
The specific operation of this bit is implementation
dependent.
If this bit is not implemented, it must be ignored on write
and read as zero. If this bit is implemented, the reset state
must be zero so that the processor starts at full perfor-
mance.

R/W 0 Optional

Encoding Meaning

0 Access not allowed

1 Access allowed

98 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

FR 26 In Release 1 of the Architecture, only MIPS64 proces-
sors could implement a 64-bit floating point unit. In
Release 2 of the Architecture, both MIPS32 and MIPS64
processors can implement a 64-bit floating point unit.
This bit is used to control the floating point register
mode for 64-bit floating point units:

This bit must be ignored on write and read as zero under
the following conditions:
• No floating point unit is implemented
• In a MIPS32 implementation of Release 1 of the

Architecture
• In an implementation of Release 2 of the Architecture

in which a 64-bit floating point unit is not imple-
mented

Certain combinations of the FR bit and other state or
operations can cause UNPREDICTABLE behavior. See
“64-bit FPR Enable” on page 18 for a discussion of these
combinations.

R/W Undefined Required

RE 25 Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.
If this bit is not implemented, it must be ignored on write
and read as zero.

R/W Undefined Optional

MX 24 Enables access to MDMX™ and MIPS® DSP resources
on processors implementing one of these ASEs. If nei-
ther the MDMX nor the MIPS DSP ASE is imple-
mented, this bit must be ignored on write and read as
zero.

R if the
processor
imple-
ments nei-
ther the
MDMX
nor the
MIPS DSP
ASEs; oth-
erwise
R/W

0 if the
processor
imple-
ments nei-
ther the
MDMX
nor the
MIPS DSP
ASEs; oth-
erwise
Undefined

Optional

Table 8.21 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Floating point registers can contain
any 32-bit datatype. 64-bit datatypes
are stored in even-odd pairs of regis-
ters.

1 Floating point registers can contain
any datatype

Encoding Meaning

0 User mode uses configured endian-
ness

1 User mode uses reversed endianness

Encoding Meaning

0 Access not allowed

1 Access allowed

8.19 Status Register (CP Register 12, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 99

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

PX 23 Enables access to 64-bit operations on MIPS64 proces-
sors. Not used by MIPS32 processors. This bit must be
ignored on write and read as zero.

R 0 Required

BEV 22 Controls the location of exception vectors:

See “Exception Vector Locations” on page 45 for
details.

R/W 1 Required

TS1 21 Indicates that the TLB has detected a match on multiple
entries. It is implementation dependent whether this
detection occurs at all, on a write to the TLB, or an
access to the TLB. In Release 2 of the Architecture,
multiple TLB matches may only be reported on a
TLB write. When such a detection occurs, the proces-
sor initiates a machine check exception and sets this bit.
It is implementation dependent whether this condition
can be corrected by software. If the condition can be cor-
rected, this bit should be cleared by software before
resuming normal operation.
See “TLB Initialization” on page 25 for a discussion of
software TLB initialization used to avoid a machine
check exception during processor initialization.
If this bit is not implemented, it must be ignored on write
and read as zero.
Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transi-
tion is caused by software, it is UNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
machine check exception.

R/W 0 Required if the
processor
detects and
reports a match
on multiple TLB
entries

SR 20 Indicates that the entry through the reset exception vec-
tor was due to a Soft Reset:

 If this bit is not implemented, it must be ignored on
write and read as zero.
Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transi-
tion is caused by software, it is UNPREDICTABLE
whether hardware ignores or accepts the write.

R/W 1 for Soft
Reset; 0

otherwise

Required if Soft
Reset is imple-
mented

Table 8.21 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Normal

1 Bootstrap

Encoding Meaning

0 Not Soft Reset (NMI or Reset)

1 Soft Reset

100 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

NMI 19 Indicates that the entry through the reset exception vec-
tor was due to an NMI exception:

 If this bit is not implemented, it must be ignored on
write and read as zero.
Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transi-
tion is caused by software, it is UNPREDICTABLE
whether hardware ignores or accepts the write.

R/W 1 for NMI;
0 otherwise

Required if NMI
is implemented

0 18 Must be written as zero; returns zero on read. 0 0 Reserved

Impl 17..16 These bits are implementation dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on write and read as zero.

Undefined Optional

IM7..IM2 15..10 Interrupt Mask: Controls the enabling of each of the
hardware interrupts. Refer to “Interrupts” on page 31 for
a complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

these bits take on a different meaning and are interpreted
as the IPL field, described below.

R/W Undefined Required

IPL 15..10 Interrupt Priority Level.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

this field is the encoded (0..63) value of the current IPL.
An interrupt will be signaled only if the requested IPL is
higher than this value.
If EIC interrupt mode is not enabled (Config3VEIC = 0),

these bits take on a different meaning and are interpreted
as the IM7..IM2 bits, described above.

R/W Undefined Optional
(Release 2 and
EIC interrupt
mode only)

Table 8.21 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Not NMI (Soft Reset or Reset)

1 NMI

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

8.19 Status Register (CP Register 12, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 101

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

IM1..IM0 9..8 Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to “Interrupts” on page 31 for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

these bits are writable, but have no effect on the interrupt
system.

R/W Undefined Required

KX 7 Enables access to 64-bit kernel address space on 64-bit
MIPS processors. Not used by MIPS32 processors. This
bit must be ignored on write and read as zero.

R 0 Reserved

SX 6 Enables access to 64-bit supervisor address space on
64-bit MIPS processors. Not used by MIPS32 proces-
sors. This bit must be ignored on write and read as zero.

R 0 Reserved

UX 5 Enables access to 64-bit user address space on 64-bit
MIPS processors Not used by MIPS32 processors. This
bit must be ignored on write and read as zero.

R 0 Reserved

KSU 4..3 If Supervisor Mode is implemented, the encoding of this
field denotes the base operating mode of the processor.
See “MIPS32 Operating Modes” on page 17 for a full
discussion of operating modes. The encoding of this
field is:

Note: This field overlaps the UM and R0 fields,
described below.

R/W Undefined Required if
Supervisor
Mode is imple-
mented;
Optional other-
wise

Table 8.21 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

0b00 Base mode is Kernel Mode

0b01 Base mode is Supervisor Mode

0b10 Base mode is User Mode

0b11 Reserved. The operation of the pro-
cessor is UNDEFINED if this value is
written to the KSU field

102 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

UM 4 If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor. See “MIPS32
Operating Modes” on page 17 for a full discussion of
operating modes. The encoding of this bit is:

Note: This bit overlaps the KSU field, described above.

R/W Undefined Required

R0 3 If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on write and read as
zero.
Note: This bit overlaps the KSU field, described above.

R 0 Reserved

ERL 2 Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Hardware and software interrupts are disabled
• The ERET instruction will use the return address held

in ErrorEPC instead of EPC
• Segment kuseg is treated as an unmapped and

uncached region. See “Address Translation for the
kuseg Segment when StatusERL = 1” on page 24.
This allows main memory to be accessed in the pres-
ence of cache errors. The operation of the processor is
UNDEFINED if the ERL bit is set while the proces-
sor is executing instructions from kuseg.

R/W 1 Required

EXL 1 Exception Level; Set by the processor when any excep-
tion other than Reset, Soft Reset, NMI or Cache Error
exception are taken.

 When EXL is set:
• The processor is running in Kernel Mode
• Hardware and software interrupts are disabled.
• TLB Refill exceptions use the general exception vec-

tor instead of the TLB Refill vector.
• EPC, CauseBD and SRSCtl (implementations of

Release 2 of the Architecture only) will not be
updated if another exception is taken

R/W Undefined Required

Table 8.21 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level

8.19 Status Register (CP Register 12, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 103

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IM,
IPL, ERL, EXL, or IE fields of the Status register are written. See “Software Hazards and the Interrupt System” on
page 42.

IE 0 Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

In Release 2 of the Architecture, this bit may be modi-
fied separately via the DI and EI instructions.

R/W Undefined Required

1. The TS bit originally indicated a “TLB Shutdown” condition in which circuits detected multiple TLB matches and shutdown the
TLB to prevent physical damage. In newer designs, multiple TLB matches do not cause physical damage to the TLB structure, so the
TS bit retains its name, but is simply an indicator to the machine check exception handler that multiple TLB matches were detected
and reported by the processor.

Table 8.21 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

104 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.20 IntCtl Register (CP0 Register 12, Select 1)

Compliance Level: Required (Release 2).

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 8-17 shows the format of the IntCtl register; Table 8.22 describes the IntCtl register fields.

Figure 8-17 IntCtl Register Format
31 29 28 26 25 10 9 5 4 0

IPTI IPPCI
0

00 0000 0000 0000 00
VS 0

Table 8.22 IntCtl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

IPTI 31..29 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Timer Interrupt request is merged, and allows software
to determine whether to consider CauseTI for a potential

interrupt.

The value of this field is UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

R Preset or
Externally
Set

Required

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

8.20 IntCtl Register (CP0 Register 12, Select 1)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 105

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

IPPCI 28..26 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Performance Counter Interrupt request is merged, and
allows software to determine whether to consider
CausePCI for a potential interrupt.

The value of this field is UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If performance counters are not implemented
(Config1PC = 0), this field returns zero on read.

R Preset or
Externally
Set

Optional
(Performance
Counters
Implemented)

0 25..10 Must be written as zero; returns zero on read. 0 0 Reserved

VS 9..5 Vector Spacing. If vectored interrupts are implemented
(as denoted by Config3VInt or Config3VEIC), this field

specifies the spacing between vectored interrupts.

All other values are reserved. The operation of the pro-
cessor is UNDEFINED if a reserved value is written to
this field.
If neither EIC interrupt mode nor VI mode are imple-
mented (Config3VEIC = 0 and Config3VINT = 0), this

field is ignored on write and reads as zero.

R/W 0 Optional

0 4..0 Must be written as zero; returns zero on read. 0 0 Reserved

Table 8.22 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding

Spacing Between Vectors

(hex) (decimal)

0x00 0x000 0

0x01 0x020 32

0x02 0x040 64

0x04 0x080 128

0x08 0x100 256

0x10 0x200 512

106 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.21 SRSCtl Register (CP0 Register 12, Select 2)

Compliance Level: Required (Release 2).

The SRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in imple-
mentations of the architecture prior to Release 2.

Figure 8-18 shows the format of the SRSCtl register; Table 8.23 describes the SRSCtl register fields.

Figure 8-18 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0
00

HSS
0

00 00
EICSS

0
00

ESS
0
00

PSS
0
00

CSS

Table 8.23 SRSCtl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31..30 Must be written as zeros; returns zero on read. 0 0 Reserved

HSS 29..26 Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this proces-
sor. A value of zero in this field indicates that only the
normal GPRs are implemented. A non-zero value in this
field indicates that the implemented shadow sets are
numbered 0..n, where n is the value of the field.
The value in this field also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS
fields of this register, or to any of the fields of the
SRSMap register. The operation of the processor is
UNDEFINED if a value larger than the one in this field
is written to any of these other values.

R Preset Required

0 25..22 Must be written as zeros; returns zero on read. 0 0 Reserved

EICSS 21..18 EIC interrupt mode shadow set. If Config3VEIC is 1 (EIC

interrupt mode is enabled), this field is loaded from the
external interrupt controller for each interrupt request
and is used in place of the SRSMap register to select the
current shadow set for the interrupt.
See “External Interrupt Controller Mode” on page 38 for
a discussion of EIC interrupt mode. If Config3VEIC is 0,

this field must be written as zero, and returns zero on
read.

R Undefined Required
(EIC inter-
rupt mode

only)

0 17..16 Must be written as zeros; returns zero on read. 0 0 Reserved

8.21 SRSCtl Register (CP0 Register 12, Select 2)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 107

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

ESS 15..12 Exception Shadow Set. This field specifies the shadow
set to use on entry to Kernel Mode caused by any excep-
tion other than a vectored interrupt.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0 Required

0 11..10 Must be written as zeros; returns zero on read. 0 0 Reserved

PSS 9..6 Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the next
paragraph, this field is copied from the CSS field when
an exception or interrupt occurs. An ERET instruction
copies this value back into the CSS field if StatusBEV =

0.
This field is not updated on any exception which sets
StatusERL to 1 (i.e., NMI or cache error), an entry into

EJTAG Debug mode, or any exception or interrupt that
occurs with StatusEXL = 1, or StatusBEV = 1.

The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0 Required

0 5..4 Must be written as zeros; returns zero on read. 0 0 Reserved

CSS 3..0 Current Shadow Set. If GPR shadow registers are imple-
mented, this field is the number of the current GPR set.
With the exclusions noted in the next paragraph, this
field is updated with a new value on any interrupt or
exception, and restored from the PSS field on an ERET.
Table 8.24 describes the various sources from which the
CSS field is updated on an exception or interrupt.
This field is not updated on any exception which sets
StatusERL to 1 (i.e., NMI or cache error), an entry into

EJTAG Debug mode, or any exception or interrupt that
occurs with StatusEXL = 1, or StatusBEV = 1. Neither is it

updated on an ERET with StatusERL = 1 or StatusBEV =

1.
The value of CSS can be changed directly by software
only by writing the PSS field and executing an ERET
instruction.

R 0 Required

Table 8.24 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Table 8.23 SRSCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

108 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Programming Note:

A software change to the PSS field creates an instruction hazard between the write of the SRSCtl register and the use
of a RDPGPR or WRPGPR instruction. This hazard must be cleared with a JR.HB or JALR.HB instruction as
described in “Hazard Clearing Instructions and Events” on page 68. A hardware change to the PSS field as the result
of interrupt or exception entry is automatically cleared for the execution of the first instruction in the interrupt or
exception handler.

Non-Vectored
Interrupt

CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt CauseIV = 1 and

Config3VEIC = 0 and

Config3VInt = 1

SRSMapVectNum
×4+3..VectNum×4

Source is internal map regis-
ter

Vectored EIC
Interrupt

CauseIV = 1 and

Config3VEIC = 1

SRSCtlEICSS Source is external interrupt
controller.

Table 8.24 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

8.22 SRSMap Register (CP0 Register 12, Select 3)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 109

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.22 SRSMap Register (CP0 Register 12, Select 3)

Compliance Level: Required in Release 2 of the Architecture if Additional Shadow Sets and Vectored Interrupt
Mode are Implemented

The SRSMap register contains 8 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from SRSCt-
lESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 8-19 shows the format of the SRSMap register; Table 8.25 describes the SRSMap register fields.

Figure 8-19 SRSMap Register Format
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 8.25 SRSMap Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

SSV7 31..28 Shadow register set number for Vector Number 7 R/W 0 Required

SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0 Required

SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0 Required

SSV4 19..16 Shadow register set number for Vector Number 4 R/W 0 Required

SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0 Required

SSV2 11..8 Shadow register set number for Vector Number 2 R/W 0 Required

SSV1 7..4 Shadow register set number for Vector Number 1 R/W 0 Required

SSV0 3..0 Shadow register set number for Vector Number 0 R/W 0 Required

110 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.23 Cause Register (CP0 Register 13, Select 0)

Compliance Level: Required.

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 8-20 shows the format of the Cause register; Table 8.26 describes the Cause register fields.

Figure 8-20 Cause Register Format
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0 IP7..IP2 IP1..IP0 0 Exc Code 0

RIPL

Table 8.26 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

BD 31 Indicates whether the last exception taken occurred in a
branch delay slot:

The processor updates BD only if StatusEXL was zero

when the exception occurred.

R Undefined Required

TI 30 Timer Interrupt. In an implementation of Release 2 of
the Architecture, this bit denotes whether a timer inter-
rupt is pending (analogous to the IP bits for other inter-
rupt types):

In an implementation of Release 1 of the Architecture,
this bit must be written as zero and returns zero on read.

R Undefined Required
(Release 2)

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

8.23 Cause Register (CP0 Register 13, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 111

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

CE 29..28 Coprocessor unit number referenced when a Coproces-
sor Unusable exception is taken. This field is loaded by
hardware on every exception, but is UNPREDICT-
ABLE for all exceptions except for Coprocessor Unus-
able.

R Undefined Required

DC 27 Disable Count register. In some power-sensitive applica-
tions, the Count register is not used but may still be the
source of some noticeable power dissipation. This bit
allows the Count register to be stopped in such situa-
tions.

In an implementation of Release 1 of the Architecture,
this bit must be written as zero, and returns zero on read.

R/W 0 Required
(Release 2)

PCI 26 Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture, this bit denotes whether a
performance counter interrupt is pending (analogous to
the IP bits for other interrupt types):

In an implementation of Release 1 of the Architecture, or
if performance counters are not implemented (Config1PC

= 0), this bit must be written as zero and returns zero on
read.

R Undefined Required
(Release 2 and
performance

counters imple-
mented)

IV 23 Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

In implementations of Release 2 of the architecture, if
the CauseIV is 1 and StatusBEV is 0, the special interrupt

vector represents the base of the vectored interrupt table.

R/W Undefined Required

Table 8.26 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

Encoding Meaning

0 No performance counter interrupt is
pending

1 Performance counter interrupt is
pending

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)

112 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

WP 22 Indicates that a watch exception was deferred because
StatusEXL or StatusERL were a one at the time the watch

exception was detected. This bit both indicates that the
watch exception was deferred, and causes the exception
to be initiated once StatusEXL and StatusERL are both

zero. As such, software must clear this bit as part of the
watch exception handler to prevent a watch exception
loop.
Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transi-
tion is caused by software, it is UNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
watch exception once StatusEXL and StatusERL are both

zero.
If watch registers are not implemented, this bit must be
ignored on write and read as zero.

R/W Undefined Required if
watch registers

are implemented

IP7..IP2 15..10 Indicates an interrupt is pending:

In implementations of Release 1 of the Architecture,
timer and performance counter interrupts are combined
in an implementation-dependent way with hardware
interrupt 5.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is not enabled (Config3VEIC =

0), timer and performance counter interrupts are com-
bined in an implementation-dependent way with any
hardware interrupt. If EIC interrupt mode is enabled
(Config3VEIC = 1), these bits take on a different meaning

and are interpreted as the RIPL field, described below.

R Undefined Required

RIPL 15..10 Requested Interrupt Priority Level.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

this field is the encoded (0..63) value of the requested
interrupt. A value of zero indicates that no interrupt is
requested.
If EIC interrupt mode is not enabled (Config3VEIC = 0),

these bits take on a different meaning and are interpreted
as the IP7..IP2 bits, described above.

R Undefined Optional
(Release 2 and
EIC interrupt
mode only)

Table 8.26 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

8.23 Cause Register (CP0 Register 13, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 113

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

IP1..IP0 9..8 Controls the request for software interrupts:

An implementation of Release 2 of the Architecture
which also implements EIC interrupt mode exports these
bits to the external interrupt controller for prioritization
with other interrupt sources.

R/W Undefined Required

ExcCode 6..2 Exception code - see Table 8.27 R Undefined Required

0 25..24,
21..16, 7,

1..0

Must be written as zero; returns zero on read. 0 0 Reserved

Table 8.27 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 0x00 Int Interrupt

1 0x01 Mod TLB modification exception

2 0x02 TLBL TLB exception (load or instruction fetch)

3 0x03 TLBS TLB exception (store)

4 0x04 AdEL Address error exception (load or instruction fetch)

5 0x05 AdES Address error exception (store)

6 0x06 IBE Bus error exception (instruction fetch)

7 0x07 DBE Bus error exception (data reference: load or store)

8 0x08 Sys Syscall exception

9 0x09 Bp Breakpoint exception. If EJTAG is implemented and an SDBBP
instruction is executed while the processor is running in EJTAG
Debug Mode, this value is written to the DebugDExcCode field to

denote an SDBBP in Debug Mode.

10 0x0a RI Reserved instruction exception

11 0x0b CpU Coprocessor Unusable exception

12 0x0c Ov Arithmetic Overflow exception

13 0x0d Tr Trap exception

Table 8.26 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0

114 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
IP1..0 field of the Cause register is written. See “Software Hazards and the Interrupt System” on page 42.

14 0x0e - Reserved

15 0x0f FPE Floating point exception

16-17 0x10-0x11 - Available for implementation dependent use

18 0x12 C2E Reserved for precise Coprocessor 2 exceptions

19-21 0x13-0x15 - Reserved

22 0x16 MDMX MDMX Unusable Exception (MDMX ASE)

23 0x17 WATCH Reference to WatchHi/WatchLo address

24 0x18 MCheck Machine check

25 0x19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions
(MIPS® MT ASE)

26-29 0x20-0x1d - Reserved

30 0x1e CacheErr Cache error. In normal mode, a cache error exception has a dedi-
cated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code is written to the DebugDExcCode field to indicate that re-entry

to Debug Mode was caused by a cache error.

31 0x1f - Reserved

Table 8.27 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

8.24 Exception Program Counter (CP0 Register 14, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 115

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.24 Exception Program Counter (CP0 Register 14, Select 0)

Compliance Level: Required.

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are significant and must be writable.

Unless the EXL bit in the Status register is already a 1, the processor writes the EPC register when an exception
occurs.

• For synchronous (precise) exceptions, EPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

• For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the ERET instruction.

Software may write the EPC register to change the processor resume address and read the EPC register to determine
at what address the processor will resume.

Figure 8-21 shows the format of the EPC register; Table 8.28 describes the EPC register fields.

8.24.1 Special Handling of the EPC Register in Processors That Implement the
MIPS16e ASE

In processors that implement the MIPS16e ASE, the EPC register requires special handling.

When the processor writes the EPC register, it combines the address at which processing resumes with the value of
the ISA Mode register:

EPC ← resumePC31..1 || ISAMode0

Figure 8-21 EPC Register Format
31 0

EPC

Table 8.28 EPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

EPC 31..0 Exception Program Counter R/W Undefined Required

116 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

“resumePC” is the address at which processing resumes, as described above.

When the processor reads the EPC register, it distributes the bits to the PC and ISAMode registers:

PC ← EPC31..1 || 0
ISAMode ← EPC0

Software reads of the EPC register simply return to a GPR the last value written with no interpretation. Software
writes to the EPC register store a new value which is interpreted by the processor as described above.

8.25 Processor Identification (CP0 Register 15, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 117

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.25 Processor Identification (CP0 Register 15, Select 0)

Compliance Level: Required.

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and revision level of the processor. Figure 8-22 shows
the format of the PRId register; Table 8.29 describes the PRId register fields.

Figure 8-22 PRId Register Format
31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 8.29 PRId Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Company
Options

31..24 Available to the designer or manufacturer of the proces-
sor for company-dependent options. The value in this
field is not specified by the architecture. If this field is
not implemented, it must read as zero.

R Preset Optional

Company
ID

23..16 Identifies the company that designed or manufactured
the processor.
Software can distinguish a MIPS32 or MIPS64 proces-
sor from one implementing an earlier MIPS ISA by
checking this field for zero. If it is non-zero the proces-
sor implements the MIPS32 or MIPS64 Architecture.
Company IDs are assigned by MIPS Technologies when
a MIPS32 or MIPS64 license is acquired. The encodings
in this field are:

R Preset Required

Processor
ID

15..8 Identifies the type of processor. This field allows soft-
ware to distinguish between various processor imple-
mentations within a single company, and is qualified by
the CompanyID field, described above. The combination
of the CompanyID and ProcessorID fields creates a
unique number assigned to each processor implementa-
tion.

R Preset Required

Encoding Meaning

0 Not a MIPS32 or MIPS64 processor

1 MIPS Technologies, Inc.

2-255 Contact MIPS Technologies, Inc. for
the list of Company ID assignments

118 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Software should not use the fields of this register to infer configuration information about the processor. Rather, the
configuration registers should be used to determine the capabilities of the processor. Programmers who identify cases
in which the configuration registers are not sufficient, requiring them to revert to check on the PRId register value,
should send email to architecture@mips.com, reporting the specific case.

Revision 7..0 Specifies the revision number of the processor. This field
allows software to distinguish between one revision and
another of the same processor type. If this field is not
implemented, it must read as zero.

R Preset Optional

Table 8.29 PRId Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

mailto:architecture@mips.com

8.26 EBase Register (CP0 Register 15, Select 1)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 119

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.26 EBase Register (CP0 Register 15, Select 1)

Compliance Level: Required (Release 2).

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV

equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31..12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when StatusBEV is 0. The exception vector base address comes from the fixed defaults (see 5.2.2 “Exception
Vector Locations” on page 45) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31..12
of the EBase register initialize the exception base register to 0x8000.0000, providing backward compatibility
with Release 1 implementations.

Bits 31..30 of the EBase register are fixed with the value 0b10,and the addition of the base address and the excep-
tion offset is done inhibiting a carry between bit 29 and bit 30 of the final exception address. The combination of
these two restrictions forces the final exception address to be in the kseg0 or kseg1 unmapped virtual address seg-
ments. For cache error exceptions, bit 29 is forced to a 1 in the ultimate exception base address so that this exception
always runs in the kseg1 unmapped, uncached virtual address segment.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation of
the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Figure 8-23 shows the format of the EBase register; Table 8.30 describes the EBase register fields.

Figure 8-23 EBase Register Format
31 30 29 12 11 10 9 0

1 0 Exception Base 0 0 CPUNum

Table 8.30 EBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

1 31 This bit is ignored on write and returns one on read. R 1 Required

0 30 This bit is ignored on write and returns zero on read. R 0 Required

Exception
Base

29..12 In conjunction with bits 31..30, this field specifies the
base address of the exception vectors when StatusBEV is

zero.

R/W 0 Required

0 11..10 Must be written as zero; returns zero on read. 0 0 Reserved

120 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Programming Note:

Software must set EBase15..12 to zero in all bit positions less than or equal to the most significant bit in the vector off-
set. This situation can only occur when a vector offset greater than 0xFFF is generated when an interrupt occurs with
VI or EIC interrupt mode enabled. The operation of the processor is UNDEFINED if this condition is not met. Table
8.31 shows the conditions under which each EBase bit must be set to zero. VN represents the interrupt vector number
as described in Table 5.4 and the bit must be set to zero if any of the relationships in the row are true. No EBase bits
must be set to zero if the interrupt vector spacing is 32 (or zero) bytes.

CPUNum 9..0 This field specifies the number of the CPU in a
multi-processor system and can be used by software to
distinguish a particular processor from the others. The
value in this field is set by inputs to the processor hard-
ware when the processor is implemented in the system
environment. In a single processor system, this value
should be set to zero.

This field can also be read via RDHWR register 0

R Preset or
Exter-

nally Set

Required

Table 8.31 Conditions Under Which EBase15..12 Must Be Zero

Interrupt Vector Spacing in Bytes (IntCtlVS
1)

1. See Table 8.22 on page 104

EBase bit 32 64 128 256 512

15 None None None None VN ≥ 63

14 None None VN ≥ 62 VN ≥ 31

13 None VN ≥ 60 VN ≥ 30 VN ≥ 15

12 VN ≥ 56 VN ≥ 28 VN ≥ 14 VN ≥ 7

Table 8.30 EBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

8.27 Configuration Register (CP0 Register 16, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 121

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.27 Configuration Register (CP0 Register 16, Select 0)

Compliance Level: Required.

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset Exception process, or are constant. Three fields, K23, KU, and K0,
must be initialized by software in the reset exception handler.

Figure 8-24 shows the format of the Config register; Table 8.32 describes the Config register fields.

Figure 8-24 Config Register Format
31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU Impl BE AT AR MT 0 VI K0

Table 8.32 Config Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

M 31 Denotes that the Config1 register is implemented at a
select field value of 1.

R 1 Required

K23 30:28 For processors that implement a Fixed Mapping MMU,
this field specifies the kseg2 and kseg3 cacheability and
coherency attribute. For processors that do not imple-
ment a Fixed Mapping MMU, this field reads as zero and
is ignored on write.
See “Alternative MMU Organizations” on page 155 for
a description of the Fixed Mapping MMU organization.

R/W Undefined for
processors with
a Fixed Map-
ping MMU; 0

otherwise

Optional

KU 27:25 For processors that implement a Fixed Mapping MMU,
this field specifies the kuseg cacheability and coherency
attribute. For processors that do not implement a Fixed
Mapping MMU, this field reads as zero and is ignored on
write.
See “Alternative MMU Organizations” on page 155 for
a description of the Fixed Mapping MMU organization.

R/W Undefined for
processors with
a Fixed Map-
ping MMU; 0

otherwise

Optional

Impl 24:16 This field is reserved for implementations. Refer to the
processor specification for the format and definition of
this field

Undefined Optional

BE 15 Indicates the endian mode in which the processor is run-
ning:

R Preset or Exter-
nally Set

Required

Encoding Meaning

0 Little endian

1 Big endian

122 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

AT 14:13 Architecture type implemented by the processor: R Preset Required

AR 12:10 Architecture revision level: R Preset Required

MT 9:7 MMU Type: R Preset Required

0 6:4 Must be written as zero; returns zero on read. 0 0 Reserved

VI 3 Virtual instruction cache (using both virtual indexing
and virtual tags):

R Preset Required

K0 2:0 Kseg0 cacheability and coherency attribute. See Table
8.8 on page 81 for the encoding of this field.

R/W Undefined Required

Table 8.32 Config Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 MIPS32

1 MIPS64 with access only to 32-bit
compatibility segments

2 MIPS64 with access to all address
segments

3 Reserved

Encoding Meaning

0 Release 1

1 Release 2

2-7 Reserved

Encoding Meaning

0 None

1 Standard TLB

2 Standard BAT (see “Block Address
Translation” on page 159)

3 Standard fixed mapping (see “Fixed
Mapping MMU” on page 155)

4-7 Reserved

Encoding Meaning

0 Instruction Cache is not virtual

1 Instruction Cache is virtual

8.28 Configuration Register 1 (CP0 Register 16, Select 1)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 123

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.28 Configuration Register 1 (CP0 Register 16, Select 1)

Compliance Level: Required.

The Config1 register is an adjunct to the Config register and encodes additional capabilities information. All fields in
the Config1 register are read-only.

The Icache and Dcache configuration parameters include encodings for the number of sets per way, the line size, and
the associativity. The total cache size for a cache is therefore:

Cache Size = Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Figure 8-25 shows the format of the Config1 register; Table 8.33 describes the Config1 register fields.

Figure 8-25 Config1 Register Format
31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size - 1 IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 8.33 Config1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config2 register is
present. If the Config2 register is not implemented, this
bit should read as a 0. If the Config2 register is imple-
mented, this bit should read as a 1.

R Preset Required

MMU
Size - 1

30..25 Number of entries in the TLB minus one. The values 0
through 63 is this field correspond to 1 to 64 TLB
entries. The value zero is implied by ConfigMT having a

value of ‘none’.

R Preset Required

IS 24:22 Icache sets per way: R Preset Required

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 Reserved

124 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

IL 21:19 Icache line size: R Preset Required

IA 18:16 Icache associativity: R Preset Required

DS 15:13 Dcache sets per way: R Preset Required

Table 8.33 Config1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No Icache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 Reserved

8.28 Configuration Register 1 (CP0 Register 16, Select 1)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 125

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

DL 12:10 Dcache line size: R Preset Required

DA 9:7 Dcache associativity: R Preset Required

C2 6 Coprocessor 2 implemented:

This bit indicates not only that the processor contains
support for Coprocessor 2, but that such a coprocessor is
attached.

MD 5 Used to denote MDMX ASE implemented on a MIPS64
processor. Not used on a MIPS32 processor.
 This bit indicates not only that the processor contains
support for MDMX, but that such a processing element
is attached.

R 0 Required

Table 8.33 Config1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No Dcache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 No coprocessor 2 implemented

1 Coprocessor 2 implements

126 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

PC 4 Performance Counter registers implemented: R Preset Required

WR 3 Watch registers implemented: R Preset Required

CA 2 Code compression (MIPS16e) implemented: R Preset Required

EP 1 EJTAG implemented: R Preset Required

FP 0 FPU implemented:

This bit indicates not only that the processor contains
support for a floating point unit, but that such a unit is
attached.
If an FPU is implemented, the capabilities of the FPU
can be read from the capability bits in the FIR CP1 regis-
ter.

R Preset Required

Table 8.33 Config1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No performance counter registers
implemented

1 Performance counter registers imple-
mented

Encoding Meaning

0 No watch registers implemented

1 Watch registers implemented

Encoding Meaning

0 MIPS16e not implemented

1 MIPS16e implemented

Encoding Meaning

0 No EJTAG implemented

1 EJTAG implemented

Encoding Meaning

0 No FPU implemented

1 FPU implemented

8.29 Configuration Register 2 (CP0 Register 16, Select 2)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 127

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.29 Configuration Register 2 (CP0 Register 16, Select 2)

Compliance Level: Required if a level 2 or level 3 cache is implemented, or if the Config3 register is required;
Optional otherwise.

The Config2 register encodes level 2 and level 3 cache configurations.

Figure 8-26 shows the format of the Config2 register; Table 8.34 describes the Config2 register fields.

Figure 8-26 Config2 Register Format
31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

M TU TS TL TA SU SS SL SA

Table 8.34 Config2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config3 register is
present. If the Config3 register is not implemented, this
bit should read as a 0. If the Config3 register is imple-
mented, this bit should read as a 1.

R Preset Required

TU 30:28 Implementation-specific tertiary cache control or status
bits. If this field is not implemented it should read as
zero and be ignored on write.

R/W Preset Optional

TS 27:24 Tertiary cache sets per way: R Preset Required

Encoding Sets Per Way

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved

128 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

TL 23:20 Tertiary cache line size: R Preset Required

TA 19:16 Tertiary cache associativity: R Preset Required

SU 15:12 Implementation-specific secondary cache control or sta-
tus bits. If this field is not implemented it should read as
zero and be ignored on write.

R/W Preset Optional

Table 8.34 Config2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Line Size

0 No cache present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved

Encoding Associativity

0 Direct Mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved

8.29 Configuration Register 2 (CP0 Register 16, Select 2)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 129

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

SS 11:8 Secondary cache sets per way: R Preset Required

SL 7:4 Secondary cache line size: R Preset Required

SA 3:0 Secondary cache associativity: R Preset Required

Table 8.34 Config2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Sets Per Way

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 8192

8-15 Reserved

Encoding Line Size

0 No cache present

1 4

2 8

3 16

4 32

5 64

6 128

7 256

8-15 Reserved

Encoding Associativity

0 Direct Mapped

1 2

2 3

3 4

4 5

5 6

6 7

7 8

8-15 Reserved

130 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.30 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level: Required if any optional feature described by this register is implemented: Release 2 of the
Architecture, the SmartMIPS™ ASE, or trace logic; Optional otherwise.

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

Figure 8-27 shows the format of the Config3 register; Table 8.35 describes the Config3 register fields.

Figure 8-27 Config3 Register Format
31 30 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M
0

000 0000 0000 0000 00

U
L
R
I

0

D
S
P
2
P

D
S
P
P

0
I
T
L

L
P
A

V
E
I
C

V
I
n
t

SP 0
M
T

SM TL

Table 8.35 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config4 register is
present. With the current architectural definition, this bit
should always read as a 0.

R Preset Required

0 30:14,
12, 9, 3

Must be written as zeros; returns zeros on read 0 0 Reserved

ULRI 13 UserLocal register implemented. This bit indicates
whether the UserLocal coprocessor 0 register is imple-
mented.

R Preset Required

DSP2P 11 MIPS® DSP ASE Revision 2 implemented. This bit
indicates whether Revision 2 of the MIPS DSP ASE is
implemented.

R Preset Required

Encoding Meaning

0 UserLocal register is not imple-
mented

1 UserLocal register is implemented

Encoding Meaning

0 Revision 2 of the MIPS DSP ASE is
not implemented

1 Revision 2 of the MIPS DSP ASE is
implemented

8.30 Configuration Register 3 (CP0 Register 16, Select 3)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 131

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

DSPP 10 MIPS® DSP ASE implemented. This bit indicates
whether the MIPS DSP ASE is implemented.

R Preset Required

ITL 8 MIPS® IFlowTraceTM mechanism implemented. This
bit indicates whether the MIPS IFlowTrace is imple-
mented.

R Preset Required
(Release 2.1

Only)

LPA 7 Denotes the presence of support for large physical
addresses on MIPS64 processors. Not used by MIPS32
processors and returns zero on read.
For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset Required
(Release 2

Only)

VEIC 6 Support for an external interrupt controller is imple-
mented.

For implementations of Release 1 of the Architecture,
this bit returns zero on read.
This bit indicates not only that the processor contains
support for an external interrupt controller, but that such
a controller is attached.

R Preset Required
(Release 2

Only)

VInt 5 Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset Required
(Release 2

Only)

Table 8.35 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 MIPS DSP ASE is not implemented

1 MIPS DSP ASE is implemented

Encoding Meaning

0 MIPS IFlowTrace is not implemented

1 MIPS IFlowTrace is implemented

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

132 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

SP 4 Small (1KByte) page support is implemented, and the
PageGrain register exists

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset Required
(Release 2

Only)

MT 2 MIPS® MT ASE implemented. This bit indicates
whether the MIPS MT ASE is implemented.

R Preset Required

SM 1 SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented.

R Preset Required

TL 0 Trace Logic implemented. This bit indicates whether PC
or data trace is implemented.

R Preset Required

Table 8.35 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Small page support is not imple-
mented

1 Small page support is implemented

Encoding Meaning

0 MIPS MT ASE is not implemented

1 MIPS MT ASE is implemented

Encoding Meaning

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented

8.31 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 133

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.31 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)

Compliance Level: Implementation Dependent.

CP0 register 16, Selects 6 and 7 are reserved for implementation dependent use and is not defined by the architecture.
In order to use CP0 register 16, Selects 6 and 7, it is not necessary to implement CP0 register 16, Selects 2 through 5
only to set the M bit in each of these registers. That is, if the Config2 and Config3 registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

The architecture only defines the use of the M bits for presence detection of Selects 1 to 5.

134 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.32 Load Linked Address (CP0 Register 17, Select 0)

Compliance Level: Optional.

The LLAddr register contains relevant bits of the physical address read by the most recent Load Linked instruction.
This register is implementation dependent and for diagnostic purposes only and serves no function during normal
operation.

Figure 8-28 shows the format of the LLAddr register; Table 8.36 describes the LLAddr register fields.

Figure 8-28 LLAddr Register Format
31 0

PAddr

Table 8.36 LLAddr Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PAddr 31..0 This field encodes the physical address read by the most
recent Load Linked instruction. The format of this regis-
ter is implementation dependent, and an implementation
may implement as many of the bits or format the address
in any way that it finds convenient.

R Undefined Optional

8.33 WatchLo Register (CP0 Register 18)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 135

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.33 WatchLo Register (CP0 Register 18)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the
select field of the MTC0/MFC0 instructions, and each pair of Watch registers may be dedicated to a particular type of
reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and WatchHi registers
are implemented via the WR bit of the Config1 register. See the discussion of the M bit in the WatchHi register
description below.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to
match. If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be
ignored on write and return zero on read. Software may determine which enables are supported by a particular Watch
register pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation dependent whether a data watch is triggered by a prefetch, CACHE, or SYNCI (Release 2 only)
instruction whose address matches the Watch register address match conditions.

Figure 8-29 shows the format of the WatchLo register; Table 8.37 describes the WatchLo register fields.

Figure 8-29 WatchLo Register Format
31 3 2 1 0

VAddr I R W

Table 8.37 WatchLo Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

VAddr 31..3 This field specifies the virtual address to match. Note
that this is a doubleword address, since bits [2:0] are
used to control the type of match.

R/W Undefined Required

I 2 If this bit is one, watch exceptions are enabled for
instruction fetches that match the address and are actu-
ally issued by the processor (speculative instructions
never cause Watch exceptions).
If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

136 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

R 1 If this bit is one, watch exceptions are enabled for loads
that match the address.
For the purposes of the MIPS16e PC-relative load
instructions, the PC-relative reference is considered to be
a data, rather than an instruction reference. That is, the
watchpoint is triggered only if this bit is a 1.
If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

W 0 If this bit is one, watch exceptions are enabled for stores
that match the address.
If this bit is not implemented, writes to it must be
ignored, and reads must return zero.

R/W 0 Optional

Table 8.37 WatchLo Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

8.34 WatchHi Register (CP0 Register 19)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 137

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.34 WatchHi Register (CP0 Register 19)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the
select field of the MTC0/MFC0 instructions, and each pair of Watch registers may be dedicated to a particular type of
reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and WatchHi registers
are implemented via the WR bit of the Config1 register. If the M bit is one in the WatchHi register reference with a
select field of ‘n’, another WatchHi/WatchLo pair is implemented with a select field of ‘n+1’.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an
ASID, a G(lobal) bit, an optional address mask, and three bits (I, R, and W) which denote the condition that caused the
watch register to match. If the G bit is one, any virtual address reference that matches the specified address will cause
a watch exception. If the G bit is a zero, only those virtual address references for which the ASID value in the
WatchHi register matches the ASID value in the EntryHi register cause a watch exception. The optional mask field
provides address masking to qualify the address specified in WatchLo.

The I, R, and W bits are set by the processor when the corresponding watch register condition is satisfied and indicate
which watch register pair (if more than one is implemented) and which condition matched. When set by the proces-
sor, each of these bits remain set until cleared by software. All three bits are “write one to clear”, such that software
must write a one to the bit in order to clear its value. The typical way to do this is to write the value read from the
WatchHi register back to WatchHi. In doing so, only those bits which were set when the register was read are cleared
when the register is written back.

Figure 8-30 shows the format of the WatchHi register; Table 8.38 describes the WatchHi register fields.

Figure 8-30 WatchHi Register Format
31 30 29 24 23 16 15 12 11 3 2 1 0

M G 0 ASID 0 Mask I R W

Table 8.38 WatchHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If this bit is one, another pair of WatchHi/WatchLo reg-
isters is implemented at a MTC0 or MFC0 select field
value of ‘n+1’

R Preset Required

138 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

G 30 If this bit is one, any address that matches that specified
in the WatchLo register will cause a watch exception. If
this bit is zero, the ASID field of the WatchHi register
must match the ASID field of the EntryHi register to
cause a watch exception.

R/W Undefined Required

ASID 23..16 ASID value which is required to match that in the
EntryHi register if the G bit is zero in the WatchHi reg-
ister.

R/W Undefined Required

Mask 11..3 Optional bit mask that qualifies the address in the
WatchLo register. If this field is implemented, any bit in
this field that is a one inhibits the corresponding address
bit from participating in the address match.
If this field is not implemented, writes to it must be
ignored, and reads must return zero.
Software may determine how many mask bits are imple-
mented by writing ones the this field and then reading
back the result.

R/W Undefined Optional

I 2 This bit is set by hardware when an instruction fetch
condition matches the values in this watch register pair.
When set, the bit remains set until cleared by software,
which is accomplished by writing a 1 to the bit.

W1C Undefined Required
(Release 2)

R 1 This bit is set by hardware when a load condition
matches the values in this watch register pair. When set,
the bit remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

W1C Undefined Required
(Release 2)

W 0 This bit is set by hardware when a store condition
matches the values in this watch register pair. When set,
the bit remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

W1C Undefined Required
(Release 2)

0 29..24,
15..12

Must be written as zero; returns zero on read. 0 0 Reserved

Table 8.38 WatchHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

8.35 Reserved for Implementations (CP0 Register 22, all Select values)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 139

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.35 Reserved for Implementations (CP0 Register 22, all Select values)

Compliance Level: Implementation Dependent.

CP0 register 22 is reserved for implementation dependent use and is not defined by the architecture.

140 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.36 Debug Register (CP0 Register 23)

Compliance Level: Optional.

The Debug register is part of the EJTAG specification. Refer to that specification for the format and description of
this register.

8.37 DEPC Register (CP0 Register 24)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 141

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.37 DEPC Register (CP0 Register 24)

Compliance Level: Optional.

The DEPC register is a read-write register that contains the address at which processing resumes after a debug excep-
tion has been serviced. It is part of the EJTAG specification and the reader is referred there for the format and descrip-
tion of the register. All bits of the DEPC register are significant and must be writable.

When a debug exception occurs, the processor writes the DEPC register with,

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception causing instruc-
tion is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

The processor reads the DEPC register as the result of execution of the DERET instruction.

Software may write the DEPC register to change the processor resume address and read the DEPC register to deter-
mine at what address the processor will resume.

8.37.1 Special Handling of the DEPC Register in Processors That Implement the
MIPS16e ASE

In processors that implement the MIPS16e ASE, the DEPC register requires special handling.

When the processor writes the DEPC register, it combines the address at which processing resumes with the value of
the ISA Mode register:

DEPC ← resumePC31..1 || ISAMode0

“resumePC” is the address at which processing resumes, as described above.

When the processor reads the DEPC register, it distributes the bits to the PC and ISA Mode registers:

PC ← DEPC31..1 || 0
ISAMode ← DEPC0

Software reads of the DEPC register simply return to a GPR the last value written with no interpretation. Software
writes to the DEPC register store a new value which is interpreted by the processor as described above.

142 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.38 Performance Counter Register (CP0 Register 25)

Compliance Level: Recommended.

The MIPS32 Architecture supports implementation dependent performance counters that provide the capability to
count events or cycles for use in performance analysis. If performance counters are implemented, each performance
counter consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional
capability, multiple performance counters may be implemented.

Performance counters can be configured to count implementation dependent events or cycles under a specified set of
conditions that are determined by the control register for the performance counter. The counter register increments
once for each enabled event. When the most significant bit of the counter register is a one (the counter overflows), the
performance counter optionally requests an interrupt. In implementations of Release 1 of the Architecture, this inter-
rupt is combined in a implementation-dependent way with hardware interrupt 5. In Release 2 of the Architecture,
pending interrupts from all performance counters are ORed together to become the PCI bit in the Cause register, and
are prioritized as appropriate to the interrupt mode of the processor. Counting continues after a counter register over-
flow whether or not an interrupt is requested or taken.

Each performance counter is mapped into even-odd select values of the PerfCnt register: Even selects access the con-
trol register and odd selects access the counter register. Table 8.39 shows an example of two performance counters
and how they map into the select values of the PerfCnt register.

More or less than two performance counters are also possible, extending the select field in the obvious way to obtain
the desired number of performance counters. Software may determine if at least one pair of Performance Counter
Control and Counter registers is implemented via the PC bit in the Config1 register. If the M bit is one in the Perfor-
mance Counter Control register referenced via a select field of ‘n’, another pair of Performance Counter Control and
Counter registers is implemented at the select values of ‘n+2’ and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 8-31 shows the format of the Performance Counter Control Register; Table 8.40 describes the Performance
Counter Control Register fields.

Table 8.39 Example Performance Counter Usage of the PerfCnt CP0 Register

Performance
Counter

PerfCnt
Register Select

Value PerfCnt Register Usage

0 PerfCnt, Select 0 Control Register 0

PerfCnt, Select 1 Counter Register 0

1 PerfCnt, Select 2 Control Register 1

PerfCnt, Select 3 Counter Register 1

Figure 8-31 Performance Counter Control Register Format
31 30 29 25 24 16 15 14 11 10 5 4 3 2 1 0

M W Impl 0
PC
T
D

EventExt Event IE U S K EXL

8.38 Performance Counter Register (CP0 Register 25)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 143

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 8.40 Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If this bit is a one, another pair of Performance Counter
Control and Counter registers is implemented at a MTC0
or MFC0 select field value of ‘n+2’ and ‘n+3’.

R Preset Required

W 30 Denotes that the corresponding Counter register is 64
bits wide on a MIPS64 processor. Unused on a MIPS32
processor.

R Preset Required

Impl 29:25 This field is implementation dependent and is not speci-
fied by the architecture.

If not used by the implementation, must be written as
zero; returns zero on read.

Undefined

0 if not
used by the
implemen-

tation

Optional

0 24..16 Must be written as zero; returns zero on read 0 0 Reserved

PCTD 15 Performance Counter Trace Disable.
The PDTrace facility (revision 6.00 and higher) has the
ability to trace Performance Counter in its output. This
bit is used to disable the specified performance counter
from being traced when performance counter trace is
enabled and a performance counter trace event is trig-
gered.

RW 0 Required if
PDTrace Perfor-
mance Counter
Tracing feature
is implemented.

EventExt 14..11 In some implementations which support more than the
the 64 encodings possible in the 6-bit Event field, the
EventExt field acts as an extension to the Event field. In
such instances the event selection is the concatentation
of the two fields, i.e., EventExt|Event.

The actual field width is implementation dependent. Any
bits that are not implemented read as zero and are
ignored on write.

RW Undefined Optional

Event 10..5 Selects the event to be counted by the corresponding
Counter Register. The list of events is implementation
dependent, but typical events include cycles, instruc-
tions, memory reference instructions, branch instruc-
tions, cache and TLB misses, etc.
Implementations that support multiple performance
counters allow ratios of events, e.g., cache miss ratios if
cache miss and memory references are selected as the
events in two counters

R/W Undefined Required

Encoding Meaning

0 Tracing is enabled for this counter.

1 Tracing is disabled for this counter.

144 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

IE 4 Interrupt Enable. Enables the interrupt request when the
corresponding counter overflows (the most significant
bit of the counter is one. This is bit 31 for a 32-bit wide
counter or bit 63 of a 64-bit wide counter, denoted by the
W bit in this register).
Note that this bit simply enables the interrupt request.
The actual interrupt is still gated by the normal interrupt
masks and enable in the Status register.

R/W 0 Required

U 3 Enables event counting in User Mode. Refer to Section
3.4 “User Mode” on page 18 for the conditions under
which the processor is operating in User Mode.

R/W Undefined Required

S 2 Enables event counting in Supervisor Mode (for those
processors that implement Supervisor Mode). Refer to
Section 3.3 “Supervisor Mode” on page 17 for the con-
ditions under which the processor is operating in Super-
visor mode.
If the processor does not implement Supervisor Mode,
this bit must be ignored on write and return zero on read.

R/W Undefined Required

K 1 Enables event counting in Kernel Mode. Unlike the
usual definition of Kernel Mode as described in Section
3.2 “Kernel Mode” on page 17, this bit enables event
counting only when the EXL and ERL bits in the Status
register are zero.

R/W Undefined Required

Table 8.40 Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Performance counter interrupt dis-
abled

1 Performance counter interrupt enabled

Encoding Meaning

0 Disable event counting in User Mode

1 Enable event counting in User Mode

Encoding Meaning

0 Disable event counting in Supervisor
Mode

1 Enable event counting in Supervisor
Mode

Encoding Meaning

0 Disable event counting in Kernel
Mode

1 Enable event counting in Kernel Mode

8.38 Performance Counter Register (CP0 Register 25)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 145

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

The Counter Register associated with each performance counter increments once for each enabled event. Figure 8-32
shows the format of the Performance Counter Counter Register; Table 8.41 describes the Performance Counter
Counter Register fields.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IE
field of the Control register or the Event Count Field of the Counter register are written. See sECTION
5.1.2.1 “Software Hazards and the Interrupt System” on page 42.

EXL 0 Enables event counting when the EXL bit in the Status
register is one and the ERL bit in the Status register is
zero.

Counting is never enabled when the ERL bit in the Sta-
tus register or the DM bit in the Debug register is one.

R/W Undefined Required

Figure 8-32 Performance Counter Counter Register Format
31 0

Event Count

Table 8.41 Performance Counter Counter Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Event
Count

31..0 Increments once for each event that is enabled by the
corresponding Control Register. When the most signif-
icant bit is one, a pending interrupt request is ORed
with those from other performance counters and indi-
cated by the PCI bit in the Cause register.

R/W Undefined Required

Table 8.40 Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Disable event counting while EXL =
1, ERL = 0

1 Enable event counting while EXL = 1,
ERL = 0

146 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.39 ErrCtl Register (CP0 Register 26, Select 0)

Compliance Level: Optional.

The ErrCtl register provides an implementation dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or
ECC information to and from the primary or secondary cache data arrays in conjunction with specific encodings of
the Cache instruction or other implementation-dependent method. The exact format of the ErrCtl register is imple-
mentation dependent and not specified by the architecture. Refer to the processor specification for the format of this
register and a description of the fields.

8.40 CacheErr Register (CP0 Register 27, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 147

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.40 CacheErr Register (CP0 Register 27, Select 0)

Compliance Level: Optional.

The CacheErr register provides an interface with the cache error detection logic that may be implemented by a pro-
cessor.

The exact format of the CacheErr register is implementation dependent and not specified by the architecture. Refer
to the processor specification for the format of this register and a description of the fields.

148 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.41 TagLo Register (CP0 Register 28, Select 0, 2)

Compliance Level: Required if a cache is implemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or
sink of tag information, respectively.

The exact format of the TagLo and TagHi registers is implementation dependent. Refer to the processor specification
for the format of this register and a description of the fields.

However, software must be able to write zeros into the TagLo and TagHi registers and then use the Index Store Tag
cache operation to initialize the cache tags to a valid state at powerup.

It is implementation dependent whether there is a single TagLo register that acts as the interface to all caches, or a
dedicated TagLo register for each cache. If multiple TagLo registers are implemented, they occupy the even select
values for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagLo registers are implemented or not for each cache, processors must accept a write of zero to
select 0 and select 2 of TagLo as part of the software process of initializing the cache tags at powerup.

8.42 DataLo Register (CP0 Register 28, Select 1, 3)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 149

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.42 DataLo Register (CP0 Register 28, Select 1, 3)

Compliance Level: Optional.

The DataLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
ues into the DataLo and DataHi registers.

The exact format and operation of the DataLo and DataHi registers is implementation dependent. Refer to the pro-
cessor specification for the format of this register and a description of the fields.

It is implementation dependent whether there is a single DataLo register that acts as the interface to all caches, or a
dedicated DataLo register for each cache. If multiple DataLo registers are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

150 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.43 TagHi Register (CP0 Register 29, Select 0, 2)

Compliance Level: Required if a cache is implemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or
sink of tag information, respectively.

The exact format of the TagLo and TagHi registers is implementation dependent. Refer to the processor specification
for the format of this register and a description of the fields. However, software must be able to write zeros into the
TagLo and TagHi registers and the use the Index Store Tag cache operation to initialize the cache tags to a valid state
at powerup.

It is implementation dependent whether there is a single TagHi register that acts as the interface to all caches, or a
dedicated TagHi register for each cache. If multiple TagHi registers are implemented, they occupy the even select val-
ues for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagHi registers are implemented or not for each cache, processors must accept a write of zero to
select 0 and select 2 of TagHi as part of the software process of initializing the cache tags at powerup.

8.44 DataHi Register (CP0 Register 29, Select 1, 3)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 151

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.44 DataHi Register (CP0 Register 29, Select 1, 3)

Compliance Level: Optional.

The DataLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
ues into the DataLo and DataHi registers.

The exact format and operation of the DataLo and DataHi registers is implementation dependent. Refer to the pro-
cessor specification for the format of this register and a description of the fields.

152 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.45 ErrorEPC (CP0 Register 30, Select 0)

Compliance Level: Required.

The ErrorEPC register is a read-write register, similar to the EPC register, at which processing resumes after a Reset,
Soft Reset, Nonmaskable Interrupt (NMI) or Cache Error exceptions (collectively referred to as error exceptions).
Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register. All bits of
the ErrorEPC register are significant and must be writable.

When an error exception occurs, the processor writes the ErrorEPC register with:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot.

The processor reads the ErrorEPC register as the result of execution of the ERET instruction.

Software may write the ErrorEPC register to change the processor resume address and read the ErrorEPC register to
determine at what address the processor will resume

Figure 8-33 shows the format of the ErrorEPC register; Table 8.42 describes the ErrorEPC register fields.

8.45.1 Special Handling of the ErrorEPC Register in Processors That Implement the
MIPS16e ASE

In processors that implement the MIPS16e ASE, the ErrorEPC register requires special handling.

When the processor writes the ErrorEPC register, it combines the address at which processing resumes with the
value of the ISA Mode register:

ErrorEPC ← resumePC31..1 || ISAMode0

“resumePC” is the address at which processing resumes, as described above.

When the processor reads the ErrorEPC register, it distributes the bits to the PC and ISAMode registers:

Figure 8-33 ErrorEPC Register Format
31 0

ErrorEPC

Table 8.42 ErrorEPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ErrorEPC 31..0 Error Exception Program Counter R/W Undefined Required

8.45 ErrorEPC (CP0 Register 30, Select 0)

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 153

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

PC ← ErrorEPC31..1 || 0
ISAMode ← ErrorEPC0

Software reads of the ErrorEPC register simply return to a GPR the last value written with no interpretation. Soft-
ware writes to the ErrorEPC register store a new value which is interpreted by the processor as described above.

154 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

8.46 DESAVE Register (CP0 Register 31)

Compliance Level: Optional.

The DESAVE register is part of the EJTAG specification. Refer to that specification for the format and description of
this register.

Appendix A

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 155

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes other
potential MMU organizations.

A.1 Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS32 Architecture supports a lightweight memory management
mechanism with fixed virtual-to-physical address translation, and no memory protection beyond what is provided by
the address error checks required of all MMUs. This may be useful for those applications which do not require the
capabilities of a full TLB-based MMU.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

• Kseg0 and Kseg1 addresses are translated in an identical manner to the TLB-based MMU: they both map to the
low 512MB of physical memory.

• Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in the
Status register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

• Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mapping.

Supervisor Mode is not supported with a Fixed Mapping MMU.

Table A.1 lists all mappings from virtual to physical addresses. Note that address error checking is still done before
the translation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error
exception, just as it does with a TLB-based MMU.

Table A.1 Physical Address Generation from Virtual Addresses

Segment
Name Virtual Address

Generates Physical Address

StatusERL = 0 StatusERL = 1

useg
suseg
kuseg

0x0000 0000
through

0x7FFF FFFF

0x4000 0000
through

0xBFFF FFFF

0x0000 0000
through

0x7FFF FFFF

kseg0 0x8000 0000
through

0x9FFF FFFF

0x0000 0000
through

0x1FFF FFFF

 Alternative MMU Organizations

156 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Note that this mapping means that physical addresses 0x2000 0000 through 0x3FFF FFFF are inaccessible
when the ERL bit is off in the Status register, and physical addresses 0x8000 0000 through 0xBFFF FFFF are
inaccessible when the ERL bit is on in the Status register.

kseg1
0xA000 0000

through
0xBFFF FFFF

0x0000 0000
through

0x0x1FFF FFFF

sseg
ksseg
kseg2

0xC000 0000
through

0xDFFF FFFF

0xC000 0000
through

0xDFFF FFFF

kseg3 0xE000 0000
through

0xFFFF FFFF

0xE000 0000
through

0xFFFF FFFF

Table A.1 Physical Address Generation from Virtual Addresses (Continued)

Segment
Name Virtual Address

Generates Physical Address

StatusERL = 0 StatusERL = 1

A.1 Fixed Mapping MMU

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 157

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure A-1 shows the memory mapping when the ERL bit in the Status register is zero; Figure A-2 shows the mem-
ory mapping when the ERL bit is one.

Figure A-1 Memory Mapping when ERL = 0

0x0000 0000

0x7FFF FFFF
0x8000 0000

0x9FFF FFFF
0xA000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

kseg0

kseg1

kseg3

kuseg
suseg
useg

ksseg
sseg

kseg2

0x0000 0000

0x1FFF FFFF
0x2000 0000

0x3FFF FFFF
0x4000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

Unmapped

kseg3 Mapped

ksseg
sseg Mapped

kseg2

Mapped

kseg0
kseg1

kuseg
suseg
useg

Mapped

 Alternative MMU Organizations

158 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure A-2 Memory Mapping when ERL = 1

A.1.2 Cacheability Attributes

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mechanism is
required to replace this capability when the fixed mapping MMU is used. Two additional fields are added to the
Config register whose encoding is identical to that of the K0 field. These additions are the K23 and KU fields which
control the cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bit is on in
the Status register, kuseg data references are always treated as uncacheable references, independent of the value of
the KU field. The operation of the processor is UNDEFINED if the ERL bit is set while the processor is executing
instructions from kuseg.

The cacheability attributes for kseg0 and kseg1 are provided in the same manner as for a TLB-based MMU: the
cacheability attribute for kseg0 comes from the K0 field of Config, and references to kseg1 are always uncached.

Figure A-3 shows the format of the additions to the Config register; Table A.2 describes the new Config register
fields.

0x0000 0000

0x7FFF FFFF
0x8000 0000

0x9FFF FFFF
0xA000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

kseg0

kseg1

kseg3

kuseg
suseg
useg

ksseg
sseg

kseg2

0x0000 0000

0x7FFF FFFF
0x8000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

Unmapped

kseg3 Mapped

ksseg
sseg Mapped

kseg2

Mapped

kseg0
kseg1

kuseg
suseg
useg

Mapped

A.2 Block Address Translation

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 159

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

A.1.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 register
interface:

• The Index, Random, EntryLo0, EntryLo1, Context, PageMask, Wired, and EntryHi registers are no longer
required and may be removed. The effects of a read or write to these registers are UNDEFINED.

• The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and must cause a Reserved Instruc-
tion Exception.

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of the hard-
ware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechanism has
the following features:

• It preserves as much as possible of the TLB-Based interface, both in hardware and software.

• It provides independent base-and-bounds checking and relocation for instruction references and data references.

• It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data
entries which provide the base-and-bounds checking and relocation for instruction references and data references,
respectively. Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose

Figure A-3 Config Register Additions

31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU 0 BE AT AR MT 0 VI K0

Table A.2 Config Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

K23 30:28 Kseg2/Kseg3 cacheability and coherency attribute. See
Table 8.8 on page 81 for the encoding of this field.

R/W Undefined Required

KU 27:25 Kuseg cacheability and coherency attribute when Sta-
tusERL is zero. See Table 8.8 on page 81 for the encod-

ing of this field.

R/W Undefined Required

 Alternative MMU Organizations

160 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

width is implementation dependent), a cache coherence field (C), a dirty (D) bit, and a valid (V) bit. Figure A-4 shows
the logical arrangement of a BAT entry.

Figure A-4 Contents of a BAT Entry

The BAT is indexed by the reference type and the address region to be checked as shown in Table A.3.

Entries 0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address the
needs of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it is implementa-
tion-dependent how, if at all, these address regions are translated. One alternative is to combine the mapping for kseg2
and kseg3 into a single pair of instruction/data entries. Software may determine how many BAT entries are imple-
mented by looking at the MMU Size field of the Config1 register.

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and address
region is read. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a
TLB Invalid exception of the appropriate reference type is initiated. If the reference is a store and the D bit is off in
the entry, a TLB Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align
with bit 12, is added to the virtual address to form the physical address. The BAT process can be described as follows:

i ← SelectIndex (reftype, va)
bounds ← BAT[i]BoundsVPN || 112

pfn ← BAT[i]BasePFN
c ← BAT[i]C
d ← BAT[i]D
v ← BAT[i]V
if (va > bounds) or (v = 0) then

InitiateTLBInvalidException(reftype)
endif
if (d = 0) and (reftype = store) then

InitiateTLBModifiedException()

Table A.3 BAT Entry Assignments

Entry Index
Reference

Type Address Region

0 Instruction useg/kuseg

1 Data

2 Instruction kseg2
(or kseg2 and kseg3)

3 Data

4 Instruction kseg3

5 Data

VDCBasePFN

BoundsVPN

A.2 Block Address Translation

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 161

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

endif
pa ← va + (pfn || 012)

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
value to zero leaves the first virtual page mapped.

A.2.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 register
interface:

• The Index register is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.

• The EntryHi register is the interface to the BoundsVPN field in the BAT entry.

• The EntryLo0 register is the interface to the BasePFN and C, D, and V fields of the BAT entry. The register has
the same format as for a TLB-based MMU.

• The Random, EntryLo1, Context, PageMask, and Wired registers are eliminated. The effects of a read or
write to these registers is UNDEFINED.

• The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT
entry whose index is contained in the Index register. The effects of executing a TLBP or TLBWR are UNDE-
FINED, but processors should signal a Reserved Instruction Exception.

 Alternative MMU Organizations

162 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Appendix B

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 163

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

 Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.

0.95 March 12, 2001 Clean up document for external review release

1.00 August 29, 2002 Update based on review feedback:
• Change ProbEn to ProbeTrap in the EJTAG Debug entry vector location dis-

cussion.
• Add cache error and EJTAG Debug exceptions to the list of exceptions that

do not go through the general exception processing mechanism.
• Fix incorrect branch offset adjustment in general exception processing

pseudo code to deal with extended MIPS16e instructions.
• Add ConfigVI to denote an instruction cache with both virtual indexing and

virtual tags.
• Correct XContext register description to note that both BadVPN2 and R

fields are UNPREDICTABLE after an address error exception.
• Note that Supervisor Mode is not supported with a Fixed Mapping MMU.
• Define TagLo bits 4..3 as implementation dependent.
• Describe the intended usage model differences between Reset and Soft

Reset Exceptions.
• Correct the minimum number of TLB entries to be 3, not 2, and show an

example of the need for 3.
• Modify the description of PageMask and the TLB lookup process to

acknowledge the fact that not all implementations may support all page
sizes.

1.90 September 1, 2002 Update the specification with the changes introduced in Release 2 of the
Architecture. Changes in this revision include:
• The following new Coprocessor 0 registers were added: EBase, HWREna,

IntCtl, PageGrain, SRSCtl, SRSMap.
• The following Coprocessor 0 registers were modified: Cause, Config,

Config2, Config3, EntryHi, EntryLo0, EntryLo1, PageMask, PerfCnt, Sta-
tus, WatchHi, WatchLo.

• The descriptions of Virtual memory, exceptions, and hazards have been
updated to reflect the changes in Release 2.

• A chapter on GPR shadow regsiters has been added.
• The chapter on CP0 hazards has been completely rewriten to reflect the

Release 2 changes.

 Revision History

164 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

2.00 June 9, 2003 Complete the update to include Release 2 changes. These include:
• Make bits 12..11 of the PageMask register power up zero and be gated by

1K page enable. This eliminates the problem of having these bits set to 0b11
on a Release 2 chip in which kernel software has not enabled 1K page sup-
port.

• Correct the address of the cache error vector when the BEV bit is 1. It
should be 0xBFC0.0300,. not 0xBFC0.0200.

• Correct the introduction to shadow registers to note that the SRSCtl register
is not updated at the end of an exception in which StatusBEV = 1.

• Clarify that a MIPS16e PC-relative load reference is a data reference for the
purposes of the Watch registers.

• Add note about a hardware interrupt being deasserted between the time that
the processor detects the interrupt request and the time that the software
interrupt handler runs. Software must be prepared for this case and simply
dismiss the interrupt via an ERET.

• Add restriction that software must set EBase15..12 to zero in all bit positions

less than or equal to the most significant bit in the vector offset. This is only
required in certain combinations of vector number and vector spacing when
using VI or EIC Interrupt modes.

• Add suggested software TLB init routine which reduced the probability of
triggering a machine check.

2.50 July 1, 2005 Changes in this revision:
• Correct the encoding table description for the CausePCI bit to indicate that

the bit controlls the performance counter, not the timer interrupt.
• Correct the figure Interrupt Generation for External Interrupt Controller

Interrupt Mode to show CauseIP1..0 going to the EIC, rather than StatusIP1..0

• Update all files to FrameMaker 7.1.
• Update reset exception list to reflect missing Release 2 reset requirements.
• Define bits 31..30 in the HWREna register as access enables for the imple-

mentation-dependent hardware registers 31 and 30.
• Add definition for Coprocessor 0 Enable to Operating Modes chapter.
• Add K23 and KU fields to main Config register definition as a pointer to the

Fixed Mapping MMU appendix.
• Add specific note about the need to implement all shadow sets between 0

and HSS - no holes are allowed.
• Change the hazard from a software write to the SRSCtlPSS field and a

RDPGPR and WRPGPR and instruction hazard vs. an execution hazard.
• Correct the pseudo-code in the cache error exception description to reflect

the Release 2 change that introduced EBase.
• Document that EHB clears instruction state change hazards for writes to

interrupt-related fields in the Status, Cause, Compare, and PerfCnt regis-
ters.

• Note that implementation-dependent bits in the Status and Config registers
should be defined in such a way that standard boot software will run, and
that software which preserves the value of the field when writing the regis-
ters will also run correctly.

• With Release 2 of the Architecture the FR bit in the Status register should
be a R/W bit, not a R bit.

• Improve the organization of the CP0 hazards table, and document that
DERET, ERET, and exceptions and interrupts clear all hazards before the
instruction fetch at the target instruction.

• Add list of MIPS® MT CP0 registers and MIPS MT and MIPS® DSP
present bits in the Config3 register.

Revision Date Description

MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62 165

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

2.60 Jun 25, 2008 Changes in this revision:
• Add the UserLocal register and access to it via the RDHWR instruction.
• Operating Modes - footnote about ksseg/sseg
• COP3 no longer usable for customer extensions
• EIC Mode allows VectorNum != RIPL
• CP0Regs Table - added missing EJTAG & PDTrace Registers
• C0_DataLo/Hi are actually R/W
• Hazards table - added a bunch of missing ones
• Various typos fixed.

2.61 August 01, 2008 • In the Status register description, the ERL behavior description was incor-
rect in saying only 29bits of kuseg becomes uncached&unmapped.

2.62 January 2, 2009 • C0_HWREna register - CCRes is accessed with register number 3, not 4.
• Added C0_PerfCnt.PCTD control bit.

Revision Date Description

 Revision History

166 MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

	MIPS32® Architecture For Programmers Volume III: The MIPS32® Privileged Resource Architecture
	Contents
	Figures
	Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	The MIPS32 Privileged Resource Architecture
	2.1 Introduction
	2.2 The MIPS Coprocessor Model
	2.2.1 CP0 - The System Coprocessor
	2.2.2 CP0 Registers

	MIPS32 Operating Modes
	3.1 Debug Mode
	3.2 Kernel Mode
	3.3 Supervisor Mode
	3.4 User Mode
	3.5 Other Modes
	3.5.1 64-bit Floating Point Operations Enable
	3.5.2 64-bit FPR Enable
	3.5.3 Coprocessor 0 Enable

	Virtual Memory
	4.1 Support in Release 1 and Release 2 of the Architecture
	4.1.1 Virtual Memory

	4.2 Terminology
	4.2.1 Address Space
	4.2.2 Segment and Segment Size
	4.2.3 Physical Address Size (PABITS)

	4.3 Virtual Address Spaces
	4.4 Compliance
	4.5 Access Control as a Function of Address and Operating Mode
	4.6 Address Translation and Cacheability & Coherency Attributes for the kseg0 and kseg1 Segments
	4.7 Address Translation for the kuseg Segment when StatusERL = 1
	4.8 Special Behavior for the kseg3 Segment when DebugDM = 1
	4.9 TLB-Based Virtual Address Translation
	4.9.1 Address Space Identifiers (ASID)
	4.9.2 TLB Organization
	4.9.3 TLB Initialization
	4.9.4 Address Translation

	Interrupts and Exceptions
	5.1 Interrupts
	5.1.1 Interrupt Modes
	5.1.1.1 Interrupt Compatibility Mode
	5.1.1.2 Vectored Interrupt Mode
	5.1.1.3 External Interrupt Controller Mode

	5.1.2 Generation of Exception Vector Offsets for Vectored Interrupts
	5.1.2.1 Software Hazards and the Interrupt System

	5.2 Exceptions
	5.2.1 Exception Priority
	5.2.2 Exception Vector Locations
	5.2.3 General Exception Processing
	5.2.4 EJTAG Debug Exception
	5.2.5 Reset Exception
	5.2.6 Soft Reset Exception
	5.2.7 Non Maskable Interrupt (NMI) Exception
	5.2.8 Machine Check Exception
	5.2.9 Address Error Exception
	5.2.10 TLB Refill Exception
	5.2.11 TLB Invalid Exception
	5.2.12 TLB Modified Exception
	5.2.13 Cache Error Exception
	5.2.14 Bus Error Exception
	5.2.15 Integer Overflow Exception
	5.2.16 Trap Exception
	5.2.17 System Call Exception
	5.2.18 Breakpoint Exception
	5.2.19 Reserved Instruction Exception
	5.2.20 Coprocessor Unusable Exception
	5.2.21 Floating Point Exception
	5.2.22 Coprocessor 2 Exception
	5.2.23 Watch Exception
	5.2.24 Interrupt Exception

	GPR Shadow Registers
	6.1 Introduction to Shadow Sets
	6.2 Support Instructions

	CP0 Hazards
	7.1 Introduction
	7.2 Types of Hazards
	7.2.1 Execution Hazards
	7.2.2 Instruction Hazards

	7.3 Hazard Clearing Instructions and Events
	7.3.1 Instruction Encoding

	Coprocessor 0 Registers
	8.1 Coprocessor 0 Register Summary
	8.2 Notation
	8.3 Writing CPU Registers
	8.4 Index Register (CP0 Register 0, Select 0)
	8.5 Random Register (CP0 Register 1, Select 0)
	8.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	8.7 Context Register (CP0 Register 4, Select 0)
	8.8 UserLocal Register (CP0 Register 4, Select 2)
	8.9 PageMask Register (CP0 Register 5, Select 0)
	8.10 PageGrain Register (CP0 Register 5, Select 1)
	8.11 Wired Register (CP0 Register 6, Select 0)
	8.12 HWREna Register (CP0 Register 7, Select 0)
	8.13 BadVAddr Register (CP0 Register 8, Select 0)
	8.14 Count Register (CP0 Register 9, Select 0)
	8.15 Reserved for Implementations (CP0 Register 9, Selects 6 and 7)
	8.16 EntryHi Register (CP0 Register 10, Select 0)
	8.17 Compare Register (CP0 Register 11, Select 0)
	8.18 Reserved for Implementations (CP0 Register 11, Selects 6 and 7)
	8.19 Status Register (CP Register 12, Select 0)
	8.20 IntCtl Register (CP0 Register 12, Select 1)
	8.21 SRSCtl Register (CP0 Register 12, Select 2)
	8.22 SRSMap Register (CP0 Register 12, Select 3)
	8.23 Cause Register (CP0 Register 13, Select 0)
	8.24 Exception Program Counter (CP0 Register 14, Select 0)
	8.24.1 Special Handling of the EPC Register in Processors That Implement the MIPS16e ASE

	8.25 Processor Identification (CP0 Register 15, Select 0)
	8.26 EBase Register (CP0 Register 15, Select 1)
	8.27 Configuration Register (CP0 Register 16, Select 0)
	8.28 Configuration Register 1 (CP0 Register 16, Select 1)
	8.29 Configuration Register 2 (CP0 Register 16, Select 2)
	8.30 Configuration Register 3 (CP0 Register 16, Select 3)
	8.31 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)
	8.32 Load Linked Address (CP0 Register 17, Select 0)
	8.33 WatchLo Register (CP0 Register 18)
	8.34 WatchHi Register (CP0 Register 19)
	8.35 Reserved for Implementations (CP0 Register 22, all Select values)
	8.36 Debug Register (CP0 Register 23)
	8.37 DEPC Register (CP0 Register 24)
	8.37.1 Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE

	8.38 Performance Counter Register (CP0 Register 25)
	8.39 ErrCtl Register (CP0 Register 26, Select 0)
	8.40 CacheErr Register (CP0 Register 27, Select 0)
	8.41 TagLo Register (CP0 Register 28, Select 0, 2)
	8.42 DataLo Register (CP0 Register 28, Select 1, 3)
	8.43 TagHi Register (CP0 Register 29, Select 0, 2)
	8.44 DataHi Register (CP0 Register 29, Select 1, 3)
	8.45 ErrorEPC (CP0 Register 30, Select 0)
	8.45.1 Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE

	8.46 DESAVE Register (CP0 Register 31)

	Alternative MMU Organizations
	A.1 Fixed Mapping MMU
	A.1.1 Fixed Address Translation
	A.1.2 Cacheability Attributes
	A.1.3 Changes to the CP0 Register Interface

	A.2 Block Address Translation
	A.2.1 BAT Organization
	A.2.2 Address Translation
	A.2.3 Changes to the CP0 Register Interface

	Revision History

